Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 976

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Current status of Geological disposal by "all-Japan" activities, 6; Post-closure safety assessment (2)

Tachi, Yukio; Saito, Takumi*; Kirishima, Akira*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 64(5), p.290 - 295, 2022/05

no abstracts in English

Journal Articles

Reactivity estimation based on the linear equation of characteristic time profile of power in subcritical quasi-steady state

Yamane, Yuichi

Journal of Nuclear Science and Technology, 14 Pages, 2022/04

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

The reactivity was estimated from a time profile of neutron count rate or a simulated data in a quasi-steady state after sudden change of reactivity or external neutron source strength. The estimation was based on the equation of power in subcritical quasi-steady state. The purpose of the study is to develop the method of timely reactivity estimation from complicated time profile of neutron count rate. The developed method was applied to the data simulating neutron count rate created by using one-point kinetics code, AGNES, and Poisson-distributed random noise and to the transient subcritical experiment data measured by using TRACY. The result shows that the difference of the estimated and reference value was within about 5% or less for ($$rho$$${$}$ $$>$$ -1) for simulated data and within about 7% or less for $$rho$$${$}$ $$simeq$$ -1.4 and -3.1 for the experimental data. It was also shown that the possibility of the reactivity estimation several ten seconds after the status change.

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-037, 61 Pages, 2022/01

JAEA-Review-2021-037.pdf:4.24MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of critical safety technology in fuel debris retrieval" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of research was to improve the criticality safety analysis methods in the case of fuel debris removal with the collaboration with Russian university, which has a lot of experiences in the criticality analysis. This research has been performed as two fiscal years project in FY 2019 and FY 2020 by Tokyo Institute of Technology (Tokyo Tech) and Tokyo City University (TCU) as the Japanese side, and National Research Nuclear University MEPhI as the Russian side. In FY2019, Tokyo Tech introduced a GPU server

JAEA Reports

Safe, efficient cementation of challenging radioactive wastes using alkali activated materials with high-flowability and high-anion retention capacity (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2021-036, 95 Pages, 2021/12

JAEA-Review-2021-036.pdf:5.13MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Safe, efficient cementation of challenging radioactive wastes using alkali activated materials with high-flowability and high-anion retention capacity" conducted in FY2020. For safe storage and disposal of iron sludge generated from contaminated water treatment, the present study aims to 1) explore alkali activated materials (AAM) with high-flowability and high-anion retention capacity and its recipe, 2) try mock-up manufacture and evaluation for one-tenth the size of real waste and propose the concept of the manufacturing equipment for a real plant, 3) show potential of AAM as the material for the solidification of waste with various physicochemical properties and radioactive nuclide compositions from the result of

JAEA Reports

Evaluation of the minimum critical amount for heterogeneous lattice systems composed of fuel rods utilized in low-power water-moderated research and test reactors by using continuous-energy Monte Carlo code MVP with JENDL-4.0

Yanagisawa, Hiroshi

JAEA-Technology 2021-023, 190 Pages, 2021/11

JAEA-Technology-2021-023.pdf:5.25MB

Computational analyses on nuclear criticality characteristics were carried out for heterogeneous lattice systems composed of water moderator and fuel rods utilized in low-power research and test reactors, in which the depletion of fuel due to burnup is relatively small, by using the continuous-energy Monte Carlo code MVP Version 2 with the evaluated nuclear data library JENDL-4.0. In the analyses, the minimum critical number of fuel rods was evaluated using calculated neutron multiplication factors for the heterogeneous systems of the uranium dioxide fuel rod in the Static Experiments Critical Facility (STACY) and the Tank-type Critical Assembly (TCA), and the uranium-zirconium hydride fuel rod in the Nuclear Safety Research Reactor (NSRR). In addition, six sorts of the ratio of reaction rates, which are components of neutron multiplication factors, were calculated in the analyses to explain the variation of neutron multiplication factors with the ratio of water moderator to fuel volume in a unit fuel rod cell. Those results of analyses are considered to be useful for the confirmation of reasonableness and validity of criticality safety measures as data showing criticality characteristics for water-moderated heterogeneous lattice systems composed of the existing fuel rods in research and test reactors, of which criticality data are not sufficiently provided by the Criticality Safety Handbook.

JAEA Reports

Direction of future safety research to be conducted by Sector of Nuclear Safety Research and Emergency Preparedness (FY 2021 Edition)

Planning and Co-ordination Office, Sector of Nuclear Safety Research and Emergency Preparedness

JAEA-Review 2021-019, 58 Pages, 2021/11

JAEA-Review-2021-019.pdf:2.26MB

In response to the directives of the 4th medium-to-long-term objectives, Japan Atomic Energy Agency will formulate the 4th medium-to-long-term plan and run its operation according to the plan from the fiscal year 2022. Consequently, the Sector of Nuclear Safety Research and Emergency Preparedness has reviewed the strategies of the safety research for contributing to the demand, "the continuous improvement of nuclear safety and the effectiveness of nuclear disaster prevention". It was also discussed how to proceed the safety research over the medium-to-long-term plan period based on the proposed new strategies. From the viewpoint of developing human resources and maintaining research capabilities in the sector, discussion was made on measures to pass on the knowledge and skills of senior and mid-career researchers to young researchers. The main elements of the proposed strategies are: (1) to efficiently and effectively develop both problem-solving research and advanced or leading research, considering the importance and needs on the nuclear safety and corresponding to regulatory trends and introduction of new technologies, (2) to produce research results of high quality for social implementation, including proactive proposal of measures for enhancing rationality of nuclear safety and regulation by utilizing risk information, and (3) to promote development of human resources and maintenance of technological base through challenging new research subjects. This report summarizes results of the discussion on the medium-to-long-term safety research strategies and the research plans based on the proposed strategies.

Journal Articles

Study of rational safeguards for the treatment of radioactive waste containing nuclear materials

Nakatani, Takayoshi; Shimizu, Ryo; Tazaki, Makiko; Kimura, Takashi; Tamai, Hiroshi; Suda, Kazunori

Dai-42-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2021/11

Currently, JAEA is in the advancing of decommissioning own nuclear facilities, and some facilities have been handling nuclear materials. In decommissioning, it is necessary to consider rational methods while keeping nuclear non-proliferation and transparency, including treatment of radioactive waste generated from these facilities and methods for terminating safeguards. In this study, we considered the above issues regarding waste treatment with reference to the guidance of Safeguards by Design (SBD) published by the International Atomic Energy Agency (IAEA).

Journal Articles

Development and testing of a delayed gamma-ray spectroscopy instrument utilizing Cf-252 neutrons evaluated for nuclear safeguards applications

Rodriguez, D.; Abbas, K.*; Koizumi, Mitsuo; Nonneman, S.*; Rossi, F.; Takahashi, Tone

Nuclear Instruments and Methods in Physics Research A, 1014, p.165685_1 - 165685_10, 2021/10

 Times Cited Count:1 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

Melt impingement on a flat spreading surface under wet condition

Sahboun, N. F.; Matsumoto, Toshinori; Iwasawa, Yuzuru; Sugiyama, Tomoyuki

Proceedings of Asian Symposium on Risk Assessment and Management 2021 (ASRAM 2021) (Internet), 15 Pages, 2021/10

Journal Articles

Development of effectiveness evaluations technology of the measures for improving resilience of nuclear structures at ultra high temperature

Onoda, Yuichi; Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

Proceedings of Asian Symposium on Risk Assessment and Management 2021 (ASRAM 2021) (Internet), 11 Pages, 2021/10

The effectiveness evaluations technology of the measures for improving resilience by applying a fracture control concept under ultra-high temperature conditions has developed for prototype sodium-cooled fast reactor Monju as a model plant, and the trial evaluation has conducted using this technology in this paper. The important accident sequences to which the fracture control concept is expected to be applied under ultra-high temperature condition are identified by investigating the results of the existing researches of level-2 probabilistic risk assessment for Monju. Accident sequences categorized in protected loss of heat sink and loss of reactor level are both identified as such important accident sequences which has the potential to prevent core damage. This study has developed the technology to evaluate the effectiveness of improving resilience, where the headings which stand for success or failure of the measures to improve resilience are introduced into the event tree, the branch probability of them is set, and the effectiveness of improving resilience is expressed as the reduction of core damage frequency. As a result of the trial evaluation of the effectiveness for the measures to improve resilience, it is confirmed that core damage frequency can be reduced by applying fracture control concept. The branch probability of the measures to improve resilience proposed in this study is tentatively assigned based on the assumption. This value is expected to be quantified by the forthcoming analyses of the integrity for the reactor vessel structure at ultra-high temperature. The technology developed in this study will be applied for the evaluation of improving resilience of the next generation sodium-cooled fast reactor.

Journal Articles

The Impact of cement on argillaceous rocks in radioactive waste disposal systems; A Review focusing on key processes and remaining issues

Wilson, J.*; Bateman, K.; Tachi, Yukio

Applied Geochemistry, 130, p.104979_1 - 104979_19, 2021/07

 Times Cited Count:4 Percentile:55.52(Geochemistry & Geophysics)

The concept of deep geological disposal will include the multiple use of cement-based materials. In the case of argillaceous host rocks, the presence of hyperalkaline cement porefluid results in the destabilization of primary minerals in the argillite, resulting in the development of a zone of alteration at cement-rock interfaces. The process understanding gained from experimental, analogue, and modelling studies has been reviewed, and remaining areas of uncertainty identified. Although there is a reasonably good understanding of the mineral assemblages that are likely to occur due to cement-rock interactions, there are still some areas where a degree of uncertainty remains, in particular: the evolution of cement-argillite interfaces at T $$>$$ 25$$^{circ}$$C; the rates at which secondary minerals form; the extent of pore clogging due to secondary mineral precipitation; the implications of alteration for radionuclide transport.

Journal Articles

Evaluation of high-energy delayed gamma-ray spectra dependence on interrogation timing patterns

Rodriguez, D.; Bogucarska, T.*; Koizumi, Mitsuo; Lee, H.-J.; Pedersen, B.*; Rossi, F.; Takahashi, Tone; Varasano, G.*

Nuclear Instruments and Methods in Physics Research A, 997, p.165146_1 - 165146_13, 2021/05

 Times Cited Count:1 Percentile:48.83(Instruments & Instrumentation)

JAEA Reports

Effective dose coefficients for internal exposure dose assessment in accordance with ICRP 2007 recommendations (Contract research)

Takahashi, Fumiaki; Manabe, Kentaro; Sato, Kaoru

JAEA-Review 2020-068, 114 Pages, 2021/03

JAEA-Review-2020-068.pdf:2.61MB

Radiation safety regulations have been currently established based on the 1990Recommendation by the International Commission on Radiological Protection (ICRP) in Japan. Meanwhile, ICRP released the 2007 Recommendation that replaces the 1990 Recommendation. Thus, the Radiation Council, which is established under the Nuclear Regulation Authority (NRA), has made discussions to incorporate the purpose of the 2007 Recommendation into Japanese regulations for radiation safety. As ICRP also has published effective dose coefficients for internal exposure assessment in accordance with the 2007recommendation, the technical standards are to be revised for the internal exposure assessment method in Japan. Currently, not all of the effective doses have been published to revise concentration limits for internal exposure protections of workers and public. The published effective dose coefficients are applied to radionuclides which are important in radiation protection for internal exposure of a worker. Thus, we review new effective dose coefficients as well as basic dosimetry models and data based upon Occupational Intakes of Radionuclides (OIR) parts 2, 3 and 4 that have been published from 2016 to 2019 by ICRP. In addition, issues are sorted out to provide information for revision of the technical standards for internal exposure assessment based on the 2007 Recommendations in future.

JAEA Reports

Interim activity status report of "the group for investigation of reasonable safety assurance based on graded approach" (from September, 2019 to September, 2020)

Yonomoto, Taisuke; Nakashima, Hiroshi*; Sono, Hiroki; Kishimoto, Katsumi; Izawa, Kazuhiko; Kinase, Masami; Osa, Akihiko; Ogawa, Kazuhiko; Horiguchi, Hironori; Inoi, Hiroyuki; et al.

JAEA-Review 2020-056, 51 Pages, 2021/03

JAEA-Review-2020-056.pdf:3.26MB

A group named as "The group for investigation of reasonable safety assurance based on graded approach", which consists of about 10 staffs from Sector of Nuclear Science Research, Safety and Nuclear Security Administration Department, departments for management of nuclear facility, Sector of Nuclear Safety Research and Emergency Preparedness, aims to realize effective graded approach (GA) about management of facilities and regulatory compliance of JAEA. The group started its activities in September, 2019 and has had discussions through 10 meetings and email communications. In the meetings, basic ideas of GA, status of compliance with new regulatory standards at each facility, new inspection system, etc were discussed, while individual investigation at each facility were shared among the members. This report is compiled with expectation that it will help promote rational and effective safety management based on GA by sharing contents of the activity widely inside and outside JAEA.

JAEA Reports

Outline of Regional Workshops held in 2006 - 2017 by the International Atomic Energy Agency in the proposal of Nuclear Emergency Preparedness Group of the Asian Nuclear Safety Network

Okuno, Hiroshi; Yamamoto, Kazuya

JAEA-Review 2020-066, 32 Pages, 2021/02

JAEA-Review-2020-066.pdf:3.01MB

The International Atomic Energy Agency (abbreviated as IAEA) has been implementing the Asian Nuclear Safety Network (abbreviated as ANSN) activities since 2002. As part of this effort, Topical Group on Emergency Preparedness and Response (abbreviated as EPRTG) for nuclear or radiation disasters was established in 2006 under the umbrella of the ANSN. Based on the EPRTG proposal, the IAEA conducted 23 Asian regional workshops in the 12 years from 2006 to 2017. Typical topical fields of the regional workshops were nuclear emergency drills, emergency medical care, long-term response after nuclear/radiological emergency, international cooperation, national nuclear disaster prevention system. The Japan Atomic Energy Agency has produced coordinators for EPRTG since its establishment and has led its activities since then. This report summarizes the Asian regional workshops conducted by the IAEA based on the recommendations of the EPRTG.

Journal Articles

Online measurement of the atmosphere around geopolymers under gamma irradiation

Cantarel, V.; Lambertin, D.*; Labed, V.*; Yamagishi, Isao

Journal of Nuclear Science and Technology, 58(1), p.62 - 71, 2021/01

 Times Cited Count:3 Percentile:43.05(Nuclear Science & Technology)

The gas production of wasteforms is a major safety concern for encapsulating active nuclear wastes. For geopolymers and cements, the H$$_{2}$$ produced by radiolytic processes is a key factor because of the large amount of water present in their porous structure. Herein, the gas composition evolution around geopolymers was monitored on line under $$^{60}$$Co gamma irradiation. Transient evolution of the hydrogen production yield was measured for samples with different formulations. The rate of its evolution and the final values are consistent with the presence of a chemical reaction of the pseudo-first order consuming hydrogen in the samples. The results show this phenomenon can significantly reduce the hydrogen source term of geopolymer wasteform provided their diffusion constant remains low. Lower hydrogen production rates and faster kinetics were observed with geopolymers formulations in which pore water pH was higher. Besides hydrogen production, a steady oxygen consumption was observed for all geopolymers samples. The oxygen consumption rates are proportional to the diffusion constants estimated in the modelization of hydrogen recombination by a pseudo first order reaction.

Journal Articles

Issues and recommendations about application of graded approach to research reactors

Yonomoto, Taisuke; Mineo, Hideaki; Murayama, Yoji; Hohara, Shinya*; Nakajima, Ken*; Nakatsuka, Toru; Uesaka, Mitsuru*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(1), p.73 - 77, 2021/01

no abstracts in English

Journal Articles

Chapter 18, Moving particle semi-implicit method

Wang, Z.; Duan, G.*; Koshizuka, Seiichi*; Yamaji, Akifumi*

Nuclear Power Plant Design and Analysis Codes, p.439 - 461, 2021/00

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-041, 30 Pages, 2020/12

JAEA-Review-2020-041.pdf:1.9MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of Critical Safety Technology in Fuel Debris Retrieval" conducted in FY2019.

Journal Articles

Overview and outcomes of the OECD/NEA benchmark study of the accident at the Fukushima Daiichi NPS (BSAF) Phase 2; Results of severe accident analyses for Unit 1

Herranz, L. E.*; Pellegrini, M.*; Lind, T.*; Sonnenkalb, M.*; Godin-Jacqmin, L.*; L$'o$pez, C.*; Dolganov, K.*; Cousin, F.*; Tamaki, Hitoshi; Kim, T. W.*; et al.

Nuclear Engineering and Design, 369, p.110849_1 - 110849_7, 2020/12

 Times Cited Count:9 Percentile:91.73(Nuclear Science & Technology)

Phase 2 of the OECD/NEA Project "Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Plant (BSAF)" was established in mid-2015. The objectives have been similar to Phase 1 of the project but with an extended analysis period of 3 weeks, a major focus on FP behaviour and releases to the environment and the comparison to various data and results of backwards calculations of the source term. Nine organizations of six countries submitted results of their calculated severe accident scenarios for Unit 1 at the 1F site using different severe accident codes. This paper describes the findings of the comparison of the participants results for Unit1 against each other and against plant data, the evaluation of the accident progression and the final status inside the reactors. Special focus is on RPV status, melt release and FP behaviour and release. Unit specific aspects will be highlighted and points of consensus as well as remaining uncertainties and data needs will be summarised.

976 (Records 1-20 displayed on this page)