Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 8180

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Integrated thermal power measurement in the modified STACY for the performance inspections

Araki, Shohei; Aizawa, Eiju; Murakami, Takahiko; Arakaki, Yu; Tada, Yuta; Kamikawa, Yutaka; Hasegawa, Kenta; Yoshikawa, Tomoki; Sumiya, Masato; Seki, Masakazu; et al.

Annals of Nuclear Energy, 217, p.111323_1 - 111323_8, 2025/07

JAEA has modified the STACY from a homogeneous system using solution fuel to a heterogeneous system using fuel rods in order to obtain criticality characteristics of fuel debris. The modification of the STACY was completed in December 2023. A series of performance inspections were conducted for the start of experimental operations. A new thermal power calibration is required for the performance inspections in order to operate at less than 200 W, which is the permitted thermal power. However, the thermal power measurement method and calibration data used in the former STACY is no longer available due to the modification of the modified STACY. We measured the thermal power of the STACY using the activation method that was improved to adapt to the measurement condition and calibrated the power meter system. Since the positions where activation foils could be installed were very limited, the thermal power was evaluated using numerical calculations supplemented by experimental data. Neutron flux data at the positions of the activation foil was measured by the activation method. Neutron distribution in the core was calculated by the Monte Carlo code MVP. A response function of the activation foil was calculated using the PHITS. The uncertainty of the thermal power measurement was conservatively estimated to be about 15%. Four operations were conducted for the thermal power measurement. The power meter was calibrated by using three operational data and tested with the one operational data. It was found that the indicated value of the meter adjusted by the STACY before the modification work would tend to overestimate the actual output by about 40%. In addition, the current calibration was able to calibrate the meter to within 3% accuracy.

Journal Articles

Uncertainty analysis of the inverse LASSO estimation scheme on radioactive source distributions inside reactor building rooms from air does rate measurements

Shi, W.*; Machida, Masahiko; Yamada, Susumu; Okamoto, Koji

Progress in Nuclear Energy, 184, p.105710_1 - 105710_10, 2025/06

Very recently, Least Absolute Shrinkage and Selection Operator (LASSO) has been proposed as a scheme capable to inversely estimate radioactive source distributions inside reactor building rooms from air dose rate measurements together with the predicted lower bound of the measurement numbers for successful reconstructions. However, no one has ever analyzed how the uncertainty of input data including the measurement errors influences the accuracy of the inverse estimation results. In this paper, we therefore perform uncertainty analysis of the LASSO scheme and suggest an uncertainty estimation function derived based on the theory of Candes. We actually demonstrate in two types of numerical tests with different input uncertainties obtained by using Monte Carlo code, Particle and Heavy Ion Transport code System (PHITS) that the calculated errors obey the proposed uncertainty estimation function. Thus, the LASSO scheme allows to successfully estimate radioactive distributions within the predicted uncertainty.

Journal Articles

Analysis of dissolved radionuclides trapped into corrosion products formed on carbon steel and the corresponding increase in radioactivity

Aoyama, Takahito; Ueno, Fumiyoshi; Sato, Tomonori; Kato, Chiaki; Sano, Naruto; Yamashita, Naoki; Otani, Kyohei; Igarashi, Takahiro

Annals of Nuclear Energy, 214, p.111229_1 - 111229_6, 2025/05

 Times Cited Count:0

Journal Articles

Numerical analysis of a potential Reactor Pressure Vessel (RPV) boundary failure mechanism in Fukushima Daiichi Nuclear Power Station Unit-2

Li, X.; Yamaji, Akifumi*; Sato, Ikken*; Yamashita, Takuya

Annals of Nuclear Energy, 214, p.111217_1 - 111217_13, 2025/05

 Times Cited Count:0

Journal Articles

Role of solute hydrogen on mechanical property enhancement in Fe-24Cr-19Ni austenitic steel; An ${it in situ}$ neutron diffraction study

Ito, Tatsuya; Ogawa, Yuhei*; Gong, W.; Mao, W.*; Kawasaki, Takuro; Okada, Kazuho*; Shibata, Akinobu*; Harjo, S.

Acta Materialia, 287, p.120767_1 - 120767_16, 2025/04

 Times Cited Count:0

JAEA Reports

Investigation of chemical substances affect the fluidity of paste on cement solidification

Taniguchi, Takumi; Matsumoto, Saori; Hiraki, Yoshihisa; Sato, Junya; Fujita, Hideki*; Kaneda, Yoshihisa*; Kuroki, Ryoichiro; Osugi, Takeshi

JAEA-Review 2024-059, 20 Pages, 2025/03

JAEA-Review-2024-059.pdf:1.0MB

The basic performance required for solidifying waste into cement, such as fluidity before curing and strength after curing, is expected to be affected by the chemical effects of substances and components contained in the waste. The fluidity before curing and the strength properties after curing are greatly influenced by the curing speed of the cement. We investigated existing knowledge with a focus on chemical substances that affect the curing speed of cement. In this report, chemical substances that affect fluidity are broadly classified into inorganic substances such as (1) anion species, (2) metal elements such as heavy metals, (3) inorganic compounds as cement admixtures, and (4) organic compounds as cement admixtures. Based on the investigation, we actually added chemicals and measured the setting time. As a result, it was found that there are multiple mechanisms contributing to accelerated hardening. We investigated chemical substances that inhibit the curing reaction of cement, and were able to compile information to consider ingredients that are contraindicated in cement curing.

JAEA Reports

Handbook of Advanced Hydrogen Safety Measures in Nuclear Power (2nd Edition); Development of hydrogen behavior integrated analysis system and application to actual PWR

Terada, Atsuhiko; Thwe Thwe, A.; Hino, Ryutaro*

JAEA-Review 2024-049, 400 Pages, 2025/03

JAEA-Review-2024-049.pdf:13.94MB

In the aftermath of the Fukushima Daiichi Nuclear Power Station accident, safety measures against hydrogen in severe accident has been recognized as a serious technical problem in Japan. As one of efforts to form a common knowledge base between nuclear engineers and experts on combustion and explosion, we issued the "Handbook of Advanced Nuclear Hydrogen Safety (1st edition)" in 2017. For improvement of the rational advancement of hydrogen safety measures and further reliability of hydrogen safety evaluation, a CFD analysis is highly expected to produce more precisely and quantitative results. We have been developing an integrated CFD analysis code system which can analyze hydrogen diffusion, explosion-combustion and structural integrity at the severe accident especially for pressurized water reactors (PWRs). We organized the role of LP and the CFD analyses and their utilization examples of hydrogen safety validation. Based on these results, we made the "Handbook of Advanced Nuclear Hydrogen Safety (2nd volume)". The analysis results of real scale PWR described in 2nd volume are confirmed by cross-analysis models and existing data obtained through representative small, medium and large-scale tests.

JAEA Reports

Applicability evaluation of Type A transport container for off-site transportation of small-amount of fuel debris

Sakamoto, Masahiro; Okumura, Keisuke; Kanno, Ikuo; Matsumura, Taichi; Terashima, Kenichi; Riyana, E. S.; Mizokami, Masato*; Mizokami, Shinya*

JAEA-Research 2024-017, 14 Pages, 2025/03

JAEA-Research-2024-017.pdf:1.34MB

In the TEPCO's Fukushima Daiichi Nuclear Power Station (1F), a trial retrieval of fuel debris with small-amount from Unit 2 is planned. The retrieved fuel debris will be transported out of 1F to Institutes in Ibaraki prefecture for analysis. The analyzed results will be utilized for the improvement of the processes (retrieval, transportation and storage) in the fuel debris management as feedback, and also for the development of technologies necessary in the future. The weight of fuel debris in the trial retrieval is planned to be a few grams. After the trial, the scale of retrieval will be expanded step by step. In the trial retrieval, a rational transportation container should be considered beforehand, according to the laws and regulations associated with the off-site transportation. The transportation container has a classification and the classification is decided according to the radioactivity of the material in the container. In this report, we evaluated the applicability of the Type A transport container to contribute to the safety assessment of retrieved fuel debris.

JAEA Reports

Evaluation of exposure doses and reduction factor for sheltering for each nuclear site under each accident scenario (Contract research)

Hirouchi, Jun; Watanabe, Masatoshi*; Hayashi, Naho; Nagakubo, Azusa; Takahara, Shogo

JAEA-Research 2024-015, 114 Pages, 2025/03

JAEA-Research-2024-015.pdf:10.03MB

The public living in areas contaminated by nuclear accidents is exposed to radiation in the early phase and over the long term. Even under the same accident scenario, the exposure doses and the effectiveness of sheltering, which is one of the protective measures, vary depending on the meteorological condition and the surrounding environment. The exposure doses and sheltering effectiveness in the early phase are important information for the public and the national and local governments planning a nuclear emergency preparedness. In this report, we evaluate the exposure doses and sheltering effectiveness at sites with nuclear facilities in Japan using OSCAAR, one of the probabilistic risk assessment codes, for five accident scenarios: three scenarios from past severe accident studies; a scenario defined by the Nuclear Regulatory Authority; and a scenario assuming the Fukushima Daiichi Nuclear Power Station accident. The sheltering effectiveness differed by approximately 20% among the sites. This was due to the differences in wind speed among the sites.

JAEA Reports

Elemental composition analysis of main structural materials of JMTR

Nagata, Hiroshi; Kochiyama, Mami; Chinone, Marina; Sugaya, Naoto; Nishimura, Arashi; Ishikawa, Joji; Sakai, Akihiro; Ide, Hiroshi

JAEA-Data/Code 2024-016, 44 Pages, 2025/03

JAEA-Data-Code-2024-016.pdf:3.54MB

The elemental composition of the structural materials of nuclear reactor facilities is used as one of the important parameters in activation calculations that are evaluated when formulating decommissioning plans. Regarding the elemental composition of aluminum alloys and other materials used as structural materials for test and research reactors, sufficient data is not available regarding elements other than the major elements. For this reason, samples were collected from aluminum alloy, beryllium, hafnium, and other materials that have been used as the main structural materials of JMTR (Japan Materials Testing Reactor), and their elemental compositions were analyzed. This report summarizes the elemental composition data of 78 elements obtained in FY2023.

Journal Articles

Evaluation of the distribution accuracy of radioactivity from a gamma-ray source using an omnidirectional detector for radiation imaging with fractal geometry

Sasaki, Miyuki; Abe, Yuki*; Sanada, Yukihisa; Torii, Tatsuo*

Nuclear Instruments and Methods in Physics Research A, 1072, p.170207_1 - 170207_12, 2025/03

 Times Cited Count:0

We have developed an omnidirectional radiation imager with fractal geometry named the FRIE system. This paper presents the development and evaluation of the FRIE system, designed to accurately estimate radioactivity distribution within decommissioning environments, such as the Fukushima Daiichi Nuclear Power Station. The FRIE system is a unit of tetrahedral radiation sensors; 16 sensors are arranged in a Sierpinski tetrahedron shape, and the space between the sensors is filled with tungsten-based alloy for radiation shielding. This study assessed the performance of the FRIE system in estimating radiation distribution through simulations and actual measurement tests. From the results of the simulations and experimental data, it was confirmed that by maintaining a measurement density of at least 2 points/m$$^{2}$$, limiting the positional error to within $$pm$$10 cm, and the angular error to within $$pm$$10 degrees, it is possible to estimate the source location with an angular resolution of approximately 30 degrees. Future improvements in the arrangement of the FRIE system's crystals and shielding should enhance the performance metrics. This research signifies a pioneering implementation of fractal-based radiation imaging technology, offering a new direction in radiation measurement.

Journal Articles

Renovation and restart of STACY (Static Experiment Critical Facility)

Sono, Hiroki

Robutsuri No Kenkyu (Internet), (78), 12 Pages, 2025/03

The Static Experiment Critical Facility (STACY) was renovated from a "solution fuel reactor" to a "reactor using fuel rods and light water moderator", and restarted operation on August 2, 2024, after a hiatus of 13 years and 8 months. During that time, it took 8 years and 11 months to obtain its permission and approval, 3 years and 1 month for its construction, and 4 months for pre-operation inspections on the reactor performance. This article reports on the history of STACY from its birth to its restart of operation, as well as its future utilization.

Journal Articles

Characterization of neutrons emitted by an expected small amount of fuel debris in a trial retrieval from Fukushima Daiichi Nuclear Power Station

Matsumura, Taichi; Okumura, Keisuke; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.; Kondo, Kazuhiro*

Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

An Alpha imaging detector for on-site measurement of Plutonium and Neptunium

Morishita, Yuki; DiPrete, D. P.*; Deason, T.*; Nagaishi, Ryuji

Radiation Measurements, 181, p.107366_1 - 107366_8, 2025/02

 Times Cited Count:0

Nuclear fuel materials such as Plutonium (Pu) and Neptunium (Np) are produced as by-products of reprocessing operations, necessitating precise understanding of their contamination distribution within controlled areas for radiation protection. This study presents the development and application of an alpha particle imaging detector for on-site detection of Pu and Np contamination. The detector's performance was evaluated using various alpha sources, demonstrating promising energy resolution and spatial resolution. Subsequently, $$^{239}$$Pu and $$^{237}$$Np oxide samples were measured at the Savannah River National Laboratory, showing the detector's effectiveness in on-site applications. The detector enabled simultaneous measurement of radioactivity and energy spectrum of individual particles, facilitating rapid discrimination between $$^{239}$$Pu and $$^{237}$$Np. The imaging detector has potential for enhancing on-site detection of alpha nuclides in nuclear facilities, aiding in decontamination efforts and environmental monitoring.

Journal Articles

Development of a method for distinguishing alpha particles from other types of radiation using a high-resolution alpha imager

Morishita, Yuki; Sagawa, Naoki; Fujisawa, Makoto; Kurosawa, Shunsuke*; Sasano, Makoto*; Hayashi, Masateru*; Tanaka, Hiroki*

Radiation Measurements, 181, p.107371_1 - 107371_5, 2025/02

 Times Cited Count:0

The effects of different types of radiation on a high-resolution alpha imager developed using an electron multiplying charge-coupled device (EMCCD) camera were investigated. This imager was originally developed to visualize alpha particles from Pu oxide particles at decommissioning sites. Other types of radiation such as beta particles, gamma rays, and neutrons are also present. The purpose of this study is to investigate the effects of these background radiations on the imager and to develop a method to discriminate between alpha particles and other types of radiation. When measuring gamma rays, and neutrons, the sensor of the EMCCD camera generated high intensity signals due to gamma rays and neutrons. These radiations were identified by image processing. The image values were binarized and the findContours function was applied to count the number of alpha particle spots. The results showed that alpha and gamma (neutron) radiation can be discriminated by using differences in intensity. This method will be useful for visualizing alpha particles at decommissioning sites.

JAEA Reports

Annual report for FY2022 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2022 - March 31, 2023)

Naraha Center for Remote Control Technology Development

JAEA-Review 2024-046, 52 Pages, 2025/01

JAEA-Review-2024-046.pdf:3.6MB

Naraha Center for Remote Control Technology Development (NARREC) was established in Japan Atomic Energy Agency to promote a decommissioning work of Fukushima Daiichi Nuclear Power Station (Fukushima Daiichi NPS). NARREC consists of a Full-scale Mock-up Test Building and Research Management Building. Various test facilities are installed in these buildings for the decommissioning work of Fukushima Daiichi NPS. These test facilities are intended to be used for various users, such as companies engaged in the decommissioning work, research and development institutions, educational institutions and so on. The number of NARREC facility uses was 113 in FY2022. We participated booth exhibitions and presentations on the decommissioning related events. Moreover, we also contributed to the development of human resources by supporting the 7th Creative Robot Contest for Decommissioning. As a new project, "Narahakko Children's Classroom" was implemented for elementary school students in Naraha Town. This report summarizes the activities of NARREC in FY2022, such as the utilization of facilities and equipment of NARREC, arrangement of the remote-control machines for emergency response, and training for operators by using the machines.

Journal Articles

Renovation and restart of STACY (Static Experiment Critical Facility)

Sono, Hiroki

Genshiryoku Kiko, Genken OB Kai Kaiho, (86), P. 2, 2025/01

The Static Experiment Critical Facility (STACY) was renovated from a "solution fuel reactor" to a "reactor using fuel rods and light water moderator", and restarted operation on August 2, 2024, after a hiatus of 13 years and 8 months. During that time, it took 8 years and 11 months to obtain its permission and approval, 3 years and 1 month for its construction, and 4 months for pre-operation inspections on the reactor performance. This article reports on the history of STACY from its birth to its restart of operation, as well as its future utilization.

Journal Articles

Development of a dissolution method for analyzing the elemental composition of fuel debris using sodium peroxide fusion technique

Nakamura, Satoshi; Ishii, Sho*; Kato, Hitoshi*; Ban, Yasutoshi; Hiruta, Kenta; Yoshida, Takuya; Uehara, Hiroyuki; Obata, Hiroki; Kimura, Yasuhiko; Takano, Masahide

Journal of Nuclear Science and Technology, 62(1), p.56 - 64, 2025/01

 Times Cited Count:1 Percentile:0.00(Nuclear Science & Technology)

A dissolution method for analyzing the elemental composition of fuel debris using the sodium peroxide (Na$$_{2}$$O$$_{2}$$) fusion technique has been developed. Herein, two different types of simulated debris materials (such as solid solution of (Zr,RE)O$$_{2}$$ and molten core-concrete interaction products (MCCI)) were taken. At various temperatures, these debris materials were subsequently fused with Na$$_{2}$$O$$_{2}$$ in crucibles, which are made of different materials, such as Ni, Al$$_{2}$$O$$_{3}$$, Fe, and Zr. Then, the fused samples are dissolved in nitric acid. Furthermore, the effects of the experimental conditions on the elemental composition analysis were evaluated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), which suggested the use of a Ni crucible at 923 K as an optimum testing condition. The optimum testing condition was then applied to the demonstration tests with Three Mile Island unit-2 (TMI-2) debris in a shielded concrete cell, thereby achieving complete dissolution of the debris. The elemental composition of TMI-2 debris revealed by the proposed dissolution method has good reproducibility and has an insignificant contradiction in the mass balance of the sample. Therefore, this newly developed reproducible dissolution method can be effectively utilized in practical applications by dissolving fuel debris and estimating its elemental composition.

Journal Articles

Chemical interaction of CsOH vapor with UO$$_{2}$$ and Fe-Zr melt

Nakajima, Kunihisa; Takano, Masahide

Journal of Nuclear Science and Technology, 62(1), p.78 - 85, 2025/01

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

At TEPCO's Fukushima Daiichi Nuclear Power Station, it is estimated that considerable amounts of cesium still remain in the reactors from the analysis results using the severe accident analysis codes and the reverse analysis from contaminated water. Since cesium is known to form stable compounds with uranium and zirconium, chemisorption experiments with uranium dioxide pellets and iron-zirconium melts for cesium hydroxide vapor were carried out. As the results, formations of cesium uranate, Cs$$_{2}$$UO$$_{4}$$, and cesium zirconate, Cs$$_{2}$$ZrO$$_{3}$$, were confirmed, indicating that cesium was chemisorbed on both of the uranium dioxide pellets and the iron-zirconium melts in an Ar-H$$_{2}$$-H$$_{2}$$O flow and an Ar-H$$_{2}$$ flow, respectively. Therefore, it was considered that cesium released from fuel might be trapped by chemisorption with fuels and/or iron-zirconium melts during light water reactor severe accidents.

Journal Articles

In-situ detection of high-energy beta ray emitter $$^{90}$$Sr/$$^{90}$$Y inside the Fukushima Daiichi Nuclear Power Station Unit 3 reactor building using a liquid light guide Cherenkov counter

Terasaka, Yuta; Sato, Yuki; Furuta, Yoshihiro*; Kubo, Shin*; Ichiba, Yuta*

Nuclear Instruments and Methods in Physics Research A, 1070(2), p.170021_1 - 170021_9, 2025/01

 Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)

8180 (Records 1-20 displayed on this page)