Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kawasaki, Nobuchika
JAEA-Review 2025-043, 74 Pages, 2025/10
Russia is one of the most advanced countries in the civilian use of nuclear energy. However, understanding the internal mechanisms of its nuclear program remains difficult due to various reasons. Therefore, this study presents a historical overview of Russia's nuclear energy utilization, fuel supply, fuel manufacturing capabilities, and concepts regarding reprocessing and the nuclear fuel cycle. From this overview, insights have been extracted and analyzed. These insights are then organized under two strategic perspectives: "Strategic diversity and continuity in developments and demonstrations" and "Diversity in utilizations and deployments," with considerations of implications for Japan, as below. Russia's nuclear energy policy strategically utilizes a variety of reactor types and fuel cycle technologies to expand nuclear power generation both domestically and internationally. Currently, nuclear power, centered on light-water reactors (VVER series), accounts for about 20% of Russia's electricity supply, and there are plans to increase this share to 25% by 2045. A wide range of reactors, from large-scale to medium and small modular reactors, are being constructed in Russia. Russia is also actively developing fast reactor technologies, and focusing on the reprocessing and recycling of spent fuel. Internationally, VVER-1200 reactors are under construction in several countries, and cooperation with China is deepening in the field of fast reactors. Notably, Russia offers an integrated, or selectively customizable, package of nuclear technology services on the international stage. These include not only reactor deployment, but also fuel supply, reprocessing, waste management, and even the provision of radioisotopes. Rather than simply exporting products or technology, Russia fosters long-term relationships and trust by flexibly responding to the conditions and needs of partner countries. For this reason, Russia promotes the technology developments in advance within the country in areas anticipated for future overseas deployment. It carefully selects target technologies and services and systematically rolls them out. This flexible strategy, combining "technological diversity" and "strategic consistency", enables cooperation with countries across various geopolitical contexts. For Japan, this strategic approach offers valuable lessons on how to engage in comprehensive international nuclear cooperation, not merely through technology exports, but through integrated approaches that encompass the entire fuel cycle, and by combining elements such as fast reactors and RI supply.
Collaborative Laboratories for Advanced Decommissioning Science; University of Fukui*
JAEA-Review 2025-007, 120 Pages, 2025/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Clarification of debris formation conditions on the basis of the sampling data and experimental study using simulated fuel debris and reinforcement of the analytical results of severe accident scenario" conducted from FY2021 to FY2023. The present study aims to clarify the debris formation mechanism and utilize the results to refine the accident scenario. In the backward analysis of oxide debris formation, we prepared simulated fuel particles by the aerodynamic levitation method and ejection of melted oxides from a tungsten pipe with a small hole and summarized the relationship between preparation conditions and the properties of the particles. We also demonstrated the formation of simulated fuel debris obtained by the sampling in 1F and clarified the difference between the experimental results and thermodynamic calculation. From the estimation of mixing, melting and solidified states of metallic debris, it was found that the formation of thin reaction layer suppresses the damage of SUS in spite of Zr content around 1000
C, and we quantify the elution rate of B
C and Zircaloy to the melted SUS. We extended reaction rate data between various pressure vessel with SUS and Zr and welding parts and suggested reaction rate equation for large scale experiment. We also estimated the failure behavior of lower plenum of pressure vessel and outflow behavior of melt. Furthermore, we estimated transition behavior of Uranium melt to metallic debris melt in the re-melting process of predropped metallic debris. As the experimental techniques in the future, we prepared the semi-melted debris from oxide and metals and analyzed the reaction products and discussed the formation of simulated debris with a small amount of uranium oxide using a CCIM furnace and the aerodynamic levitation method.
Watanabe, Taku*; Maejima, Yui*; Ueda, Yuki; Motokawa, Ryuhei; Takabatake, Ai*; Takeda, Shinichi*; Fudoji, Hiroshi*; Kishikawa, Keiki*; Koori, Michinari*
Langmuir, 41(34), p.22762 - 22773, 2025/09
Times Cited Count:0 Percentile:0.00The assembled structures of melanin particles, i.e., colloidal particles coated with a melanin-like polydopamine (PDA) layer, create vivid structural colors. While the thickness of the PDA layer influences the particle arrangement and optical properties, the underlying mechanism has remained controversial. We demonstrate that the water swelling characteristics of PDA are crucial factors governing the dispersion and aggregation of these particles in solution. Detailed comparisons between dry and wet conditions revealed that the PDA layer readily absorbs water molecules, which leads to significant swelling in the thicker layers. The swelling of the PDA layers determined whether the particles remained dispersed or partially aggregated in the water, ultimately controlling the particle arrangement in the dry state once the water evaporated. These findings provide insights into the self-assembly of colloidal particles and offer a strategy for tuning the periodic particle order. This feature is pivotal for various applications in optical and sensing technologies.
Ichihara, Yoshitaka*; Nakamura, Naohiro*; Nabeshima, Kunihiko*; Choi, B.; Nishida, Akemi
Nuclear Engineering and Design, 441, p.114160_1 - 114160_10, 2025/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)This paper evaluates the applicability of equivalent linear analysis of reinforced concrete model, which uses frequency-independent complex damping with a small computational load, to the seismic design of nuclear power plant reactor buildings. To this end, a three-dimensional finite element method analysis of the soil-structure interaction focusing on nonlinear and equivalent linear seismic behavior of the building embedded in an ideally uniform soil condition was performed for the Kashiwazaki-Kariwa Nuclear Power Plant Unit 7 reactor building. The equivalent linear analysis results correlated well with the nonlinear analysis results of the shear strain, acceleration, displacement, and acceleration response spectrum, demonstrating the effectiveness of the equivalent linear analysis method. Moreover, the equivalent linear analysis results were more conservative than those of nonlinear analysis using the material constitutive law in evaluating the shear strain of the external wall of the reactor building. From this result, equivalent linear analysis method tended to obtain a lower building stiffness than nonlinear analysis under the analysis conditions used in this paper.
Terasaka, Yuta; Sato, Yuki; Ichiba, Yuta*
Radiation Measurements, 187, p.107486_1 - 107486_8, 2025/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2025-004, 186 Pages, 2025/07
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted from FY2021 to FY2023. The present study aims to develop an evaluation method necessary to obtain a perspective on the longterm structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2023, the final year of the three-year project, experimental and analytical research activities were performed to develop, (1) Method for evaluating the building by monitoring the response to earthquakes and other disturbances, (2) Damage detection technology for concrete structures using electromagnetic waves, (3) Evaluation method for concrete materials and structures based on damage detection information, (4) Comprehensive soundness evaluation method and a long-term maintenance plan, (5) Promotion of the research. Expected results and final goals are achieved based on the outcomes including achievements up to FY2022.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2025-001, 94 Pages, 2025/06
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Human resource development related to remote control technology for monitoring inside RPV pedestal during retrieval of fuel debris" conducted from FY2019 to FY2023. The present study aims to construct a monitoring platform for understanding the status inside a reactor during fuel debris removal, and measurement and visualization by sensors moving on the platform. In addition, to develop research personnel through research education by participating in such research projects, classroom lectures, and facility tours is also a goal of this project. In FY2023, along with the verification of each system, a three-dimensional reconstruction model was generated using images acquired from a moving camera on the monitoring platform in a simulated environment, and an integrated experiment was conducted to demonstrate that it is possible to present images from the optimal viewpoint for the visualization target, with the cooperation of each research theme.

Karube, Kosuke*; Onuki, Yoshichika*; Nakajima, Taro*; Chen, H.-Y.*; Ishizuka, Hiroaki*; Kimata, Motoi*; Ohara, Takashi; Munakata, Koji*; Nomoto, Takuya*; Arita, Ryotaro*; et al.
npj Quantum Materials (Internet), 10, p.55_1 - 55_9, 2025/06
Ueki, Taro
Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025) (Internet), 10 Pages, 2025/04
The criticality analysis of continuously mixed random media is essential to the safe retrieval of fuel debris. Image analysis of an oxide debris mockup reveals that the power spectrum cannot be fully explained by a single factor alone, but instead requires consideration of the complexity of multiple factors. This highlights the need for a randomized function capable of representing complex power spectra. To address this, we developed a new function called the Randomized Fourier Series (RFS), which introduces randomization in amplitude and phase. RFS allows the representation of power spectra with arbitrary shapes, facilitating realistic Monte Carlo (MC) simulations of random continuous material mixtures. For demonstration, taking the Lorentz power spectrum as an example, the spectrum flatness at low wavenumbers is analyzed to understand how the transition to white noise influences the fluctuation in neutron effective multiplication factor across independently generated random media replicas. Numerical results are presented for a mixture of 4 materials, along with the root mean-squared mass deviation over the constituent materials. The MC solver Solomon is employed with a partial volume pairing feature.
Tanabe, Kosuke*; Komeda, Masao; Toh, Yosuke; Kitamura, Yasunori*; Misawa, Tsuyoshi*
Nihon Genshiryoku Gakkai-Shi ATOMO
, 67(3), p.198 - 202, 2025/03
no abstracts in English
Guembou Shouop, C. J.; Tsuchiya, Harufumi
Nuclear Instruments and Methods in Physics Research A, 1072, p.170189_1 - 170189_14, 2025/03
Times Cited Count:2 Percentile:62.28(Instruments & Instrumentation)Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Kasahara, Seiji; Okamoto, Koji*
JAEA-Research 2024-012, 98 Pages, 2025/02
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for the purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO
(PuO
-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. In research project of Pu-burner HTGR carried out from fiscal year of 2014 to fiscal year of 2017, simulated CFPs were fabricated using Ce to simulate Pu. Moreover, simulated fuel compacts were fabricated using fabricated simulated CFPs. In this report, results of microstructural observation of CeO
-YSZ and ZrC layer at each fabrication step are reported.
Matsumura, Taichi; Okumura, Keisuke; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.; Kondo, Kazuhiro*
Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Nuclear Human Resource Development Center
JAEA-Review 2024-048, 69 Pages, 2025/01
This annual report summarizes the activities of Nuclear Human Resource Development Center (NuHRDeC) of Japan Atomic Energy Agency (JAEA) in the fiscal year (FY) 2023. In FY 2023, in addition to the regular training programs at NuHRDeC, we actively organized special training courses responding to the external training needs, cooperated with universities, offered international training courses for Asian countries, and promoted activities of the Japan Nuclear Human Resource Development Network (JN-HRD.net) and the human resource development concierge. Regular domestic training programs; training courses for radioisotopes and radiation engineers, nuclear energy engineers and national qualification examinations, were conducted as scheduled in the annual plan. We also delivered training for other organizations outside the JAEA. We continued cooperative activities with universities, such as acceptance of postdoctoral researchers, and activities in line with the cooperative graduate school system, including the acceptance of students from Nuclear Professional School, the University of Tokyo. Furthermore, joint course among seven universities was successfully held by utilizing remote education system. The joint course and the intensive summer course and nuclear fuel cycle training were conducted as part of the collaboration network with universities. The Instructor Training Program (ITP) under the contract with Ministry of Education, Culture, Sports, Science and Technology, was continually offered to the ITP participating countries. As part of the ITP, the Instructor Training courses such as "Reactor Engineering Course", advanced instructor training course, and the nuclear technology seminar "Basic Radiation Knowledge for School Education" were conducted at NuHRDeC. As joint secretariat of JN-HRD.net, we steadily facilitated the network and actively held seminar, training, and facility tours for students.
-,
- and X-ray spectraOshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Asai, Masato; Shinohara, Hirofumi*; Suzuki, Katsuyuki*; Shen, H.*
Journal of Nuclear Science and Technology, 10 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The spectrum determination method (SDM) is the method to determine radioactivities by analyzing full spectral shape of
- or
rays through least-squares fitting by referring to standard
- and
spectra. In this paper, we have newly applied the SDM to a unified spectrum composed of two spectra measured with a Ge detector and a liquid scintillation counter. By analyzing the unified spectrum, uncertainties of deduced radioactivities have been improved. We applied this method to the unified spectrum including 40 radionuclides with equal intensities, and have deduced their radioactivities correctly.
Ito, Tatsuya; Xu, S.*; Xu, X.*; Omori, Toshihiro*; Kainuma, Ryosuke*
Shape Memory and Superelasticity, 9 Pages, 2025/00
Hanari, Toshihide; Nakamura, Keita*; Imabuchi, Takashi; Kawabata, Kuniaki
Journal of Robotics and Mechatronics, 36(6), p.1537 - 1549, 2024/12
This paper describes three-dimensional (3D) reconstruction processes introducing the image selection method for efficiently generating a 3D model from an image sequence. To obtain suitable images for efficient 3D reconstruction, we tried to apply the image selection method to remove the redundant images in the image sequence. By the proposed method, the suitable images were selected from the image sequence based on optical flow measures and a fixed threshold. As a result, the proposed method can reduce the computational cost for the 3D reconstruction processes based on the image sequence acquired by the camera. We confirmed that the computational cost of the 3D reconstruction processes can reduce while keeping the 3D reconstruction accuracy at a constant level.
-ray fieldsKaburagi, Masaaki; Kamada, Kei*; Ishii, Junya*; Matsumoto, Tetsuro*; Manabe, Seiya*; Masuda, Akihiko*; Harano, Hideki*; Kato, Masahiro*; Shimazoe, Kenji*
Journal of Instrumentation (Internet), 19(11), p.P11019_1 - P11019_16, 2024/11
Times Cited Count:1 Percentile:0.00(Instruments & Instrumentation)
neutron diffractionNaeem, M.*; Ma, Y.*; Knowles, A. J.*; Gong, W.; Harjo, S.; Wang, X.-L.*; Romero Resendiz, L.*; 6 of others*
Materials Science & Engineering A, 916, p.147374_1 - 147374_8, 2024/11
Times Cited Count:4 Percentile:65.10(Nanoscience & Nanotechnology)Minowa, Kazuki*; Watanabe, So; Nakase, Masahiko*; Takahatake, Yoko; Miyazaki, Yasunori; Ban, Yasutoshi; Matsuura, Haruaki*
Nuclear Instruments and Methods in Physics Research B, 556, p.165496_1 - 165496_6, 2024/11
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)In this study, X-ray absorption near edge structure (XANES) spectral analysis and column experiments were used to verify the selectivity of rare earth (RE) ions by alkyl diamide amine (ADAAM) adsorbent. In addition, the interactions between the N atoms of ADAAM and RE ions were evaluated to determine whether any of the RE ions are a valid simulant for developing a mutual separation process for minor actinides (MAs) in highly radioactive liquid waste. It was confirmed that La and Ce interacted with the amine N atom of ADAAM and they showed a peak shift of the N-K edge XANES spectrum; this finding suggested that a soft interaction is an essential factor influencing ion selectivity. Therefore, the selection factor of RE ions by ADAAM adsorbent was similar to that of MAs. It was concluded that RE ions are reasonable species to simulate MAs.