Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 18551

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Self-shielding effect of double heterogeneity for plutonium burner HTGR design

Fukaya, Yuji; Goto, Minoru; Ohashi, Hirofumi

Annals of Nuclear Energy, 138, p.107182_1 - 107182_9, 2020/04

The investigation on self-shielding effect of double heterogeneity for plutonium burner High Temperature Gas-cooled Reactor (HTGR) design has been performed. Plutonium burner HTGR designed in the previous study by using the advantage of double heterogeneity to control excess reactivity. In the present study, the mechanism of the self-shielding effect is elucidated by the analysis of burn-up calculation and reactivity decomposition based on exact perturbation theory. As a result, it is revealed that the characteristics of burn-up reactivity are determined by resonance cross section peak at 1 eV of $$^{240}$$Pu due to the surface term of background cross section, this is, the characteristics of neutron leakage from fuel lump and collision to a moderator. Moreover, significant spectrum shift is caused during the burn-up period, and it enhances reactivity worth of $$^{239}$$Pu and $$^{240}$$Pu in EOL.

JAEA Reports

Development of gel filler that facilitates fuel debris retrieval (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*

JAEA-Review 2019-029, 36 Pages, 2020/02

JAEA-Review-2019-029.pdf:2.33MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Gel Filler that Facilitates Fuel Debris Retrieval". When gel materials such as polymer, silicate and clay minerals with adjusted viscosity are used in the process of debris retrieval, the gel would not leak down from the damaged parts, resulting in the reduction of surrounding air dose rate. In addition, gel materials can reduce the diffusion and scattering of dust that is produced by cutting. For these reasons, we propose a method where inside of a containment vessel is filled by gel materials in order to simplify the debris retrieval.

Journal Articles

$$f$$-electron states of heavy-fermion superconductor NpPd$$_5$$Al$$_2$$ and rare-earth- and actinide-based isostructural compounds

Metoki, Naoto

Journal of the Physical Society of Japan, 89(2), p.025001_1 - 025001_2, 2020/02

Good correspondence of the $$LS$$ and $$j$$-$$j$$ coupling scheme can be realized in the $$f$$-electron states of the heavy-fermion superconductor NpPd$$_5$$Al$$_2$$ and the isostructural family. The rare-earth and actinide elements are under a common strong uniaxial point charge potential with tetragonal point symmetry $$D_{4h}$$. The systematic development of the $$f$$-electron states can be understood in the $$LS$$ coupling scheme of $$^nf$$ configuration (the number of $$f$$ electrons $$nleq6$$). We can find the corresponding states in $$j$$-$$j$$ coupling scheme with three $$f$$-orbitals $$Gamma_7^{rm; i}, Gamma_7^{rm; ii}$$, and $$Gamma_6$$ determined from CePd$$_5$$Al$$_2$$ with $$^1f$$ configuration.

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

Journal Articles

Monte Carlo radiation transport modelling of the current-biased kinetic inductance detector

Malins, A.; Machida, Masahiko; Vu, T. D.; Aizawa, Kazuya; Ishida, Takekazu*

Nuclear Instruments and Methods in Physics Research A, 953, p.163130_1 - 163130_7, 2020/02

 Times Cited Count:0

JAEA Reports

RADREMOTE 2018; Proceedings of The 5th Fukushima Research Conference (FRC) 2018; Radiation hardness, smartness and measurement in remote technology for the decommissioning of the Fukushima Daiichi Nuclear Power Station

Kaburagi, Masaaki; Torii, Tatsuo; Ogawa, Toru

JAEA-Review 2019-031, 251 Pages, 2020/01

JAEA-Review-2019-031.pdf:57.36MB

There is high expectation for advanced remote technology and robotics to reduce the radiation exposure for workers in harsh nuclear environments such as the decommissioning of the Fukushima Daiichi Nuclear Power Station (FDNPS). However, the radiation tolerance of state-of-the-art key components, sensors and electronic devices, for remote operation is still limited. In order to extend the application of robotics in nuclear energy, it is pertinent to develop "Radiation hardness" of components and "Radiation smartness" in operation procedures. Furthermore, developments of "Radiation measurement" and "Technology to recognize the location and to grasp the surrounding environment", including the radiation imaging of the high dose-rate fields inside the FDNPS and the detection of nuclear fuel debris, are necessary for the future nuclear fuel debris retrieval. This Fukushima Research Conference aims to share the future vision for advancing the remote technology among experts from diverse fields.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-027, 70 Pages, 2020/01

JAEA-Review-2019-027.pdf:5.18MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology for Rapid Analysis of Strontium-90 with Low Isotopic Abundance Using Laser Resonance Ionization". In this study, we will develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station. Our method is particularly intended for real samples which contain high concentrations of strontium stable isotopes such as marine samples.

JAEA Reports

Establishment of measurement system for radiation-dependent mutation in organ tissue cells derived from human iPS cells (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2019-026, 51 Pages, 2020/01

JAEA-Review-2019-026.pdf:2.8MB

JAEA/CLADS had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Establishment of Measurement System for Radiation-dependent Mutation in Organ Tissue Cells Derived from Human iPS Cells". The purpose of the present study is to establish an experimental system to evaluate the difference in radiation-dependent mutation among tissues. In previous studies, unified evaluation of the difference in radiation-dependent mutation among tissues has been difficult because the mutation rate among tissues had been evaluated using cell lines taken from different individuals. Recent biotechnological innovation in stem cell field represented by iPS cells has become enable to induce differentiation of tissue cells from a single cell. In the present study, Tokyo Institute of Technology produce tissue cells in nervous, dermal, blood and circulatory systems by unifying these new technologies. Using these tissue cells, we measure the mutation rate for each tissue after the radiation exposure, and aim to establish an experimental system to evaluate the difference in mutation depending on tissues by constructing a mathematical model.

JAEA Reports

Development of technology to simultaneously measure viscosity and surface tension of molten materials in reactor core (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*

JAEA-Review 2019-025, 36 Pages, 2020/01

JAEA-Review-2019-025.pdf:2.57MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology to Simultaneously Measure Viscosity and Surface Tension of Molten Materials in Reactor Core". Since (U,Zr)O$$_{2}$$ and boride, molten materials in reactor core, exist at extremely high temperature, chemical reactions between the vessel and these molten materials are unavoidable. Therefore, it is difficult to measure the thermophysical property of these materials. In the present study, droplets are produced by heating and melting the samples levitated by a gas levitation method, then the droplets are collided with a substrate. From the instant behavior of the collision, a new technology to simultaneously derive the viscosity and surface tension will be developed.

JAEA Reports

Interdisciplinary evaluation of biological effect of internal exposure by inhaling alpha-ray emitting nuclides represented by radon (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2019-024, 61 Pages, 2020/01

JAEA-Review-2019-024.pdf:2.22MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Interdisciplinary Evaluation of Biological Effect of Internal Exposure by Inhaling Alpha-ray Emitting Nuclides Represented by Radon". In the present study, the effect of alpha-ray emission in human body on the surrounding cells is estimated, and biological response to alpha-ray exposure is investigated at the whole organism level, by the evaluation method for radiation effects using radon that is an alpha-ray emitting nuclide, because there have been extensive studies on radon so far. From the obtained results, a model to evaluate the effect of internal exposure by alpha-ray emitting nuclides on health is constructed. Through these studies, we aim to form a research base by the interdisciplinary organic collaboration among research organizations.

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2019-023, 33 Pages, 2020/01

JAEA-Review-2019-023.pdf:1.97MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the 'Upgrading of Recovery Method for Radioactive Microparticles by Heavy Liquid Separation Aiming to Volume Reduction of Contaminated Soil'. After the accident of the Fukushima Daiichi Nuclear Power Station, radioactive cesium has been heterogeneously distributed in surface soil due to the existence of radioactive microparticles and clay minerals. Therefore, the selective removal of these microparticles will lead to the volume reduction of contaminated soil. The present study examines methods for selectively removing radioactive microparticles from soil. Also, in order to reduce the volume of contaminated soil, we search a possibility to practically apply the separation method that uses the difference in specific gravity of particles (heavy liquid separation method).

JAEA Reports

Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station (Contract research); FY2018 center of world intelligence project for nuclear science/technology and human resource development

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Polytechnic University*

JAEA-Review 2019-022, 35 Pages, 2020/01

JAEA-Review-2019-022.pdf:2.71MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the Development of Semantic Survey Map Building System Using Semi-autonomous Mobile Robots for Surveying of Disaster Area and Gathering of Information in Nuclear Power Station. The objective of the present study is to research and develop semi-autonomous mobile robot systems (multi-sensor fusion system, semantic simultaneous localization and mapping (SLAM), system for traversable-route learning and safe traversable-route presentation, etc.) that simply, safely, and rapidly make semantic survey maps including multiple information (air dose rate, temperature, obstacles, etc.). The system will be applied to the investigation of the situation inside the building of the nuclear power station where people cannot access at the time of disaster.

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2018 (April 1, 2018 - March 31, 2019)

HPC Technology Promotion Office*

JAEA-Review 2019-017, 182 Pages, 2020/01

JAEA-Review-2019-017.pdf:11.11MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2018, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2018, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Code-B-2.5.2 for stress calculation for SiC-TRISO fuel particle

Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio

JAEA-Data/Code 2019-018, 22 Pages, 2020/01

JAEA-Data-Code-2019-018.pdf:1.39MB

Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO$$_{2}$$ (PuO$$_{2}$$-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.

JAEA Reports

Earthquake observation data collection in the Horonobe Underground Research Laboratory Project (Phase II)

Miyara, Nobukatsu; Matsuoka, Toshiyuki

JAEA-Data/Code 2019-013, 8 Pages, 2020/01

JAEA-Data-Code-2019-013.pdf:1.45MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)1.zip:239.91MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)10.zip:346.69MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)11.zip:237.95MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)12.zip:335.05MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)13.zip:335.0MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)2.zip:433.26MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)3.zip:360.88MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)4.zip:292.24MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)5.zip:315.31MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)6.zip:426.42MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)7.zip:286.49MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)8.zip:187.61MB
JAEA-Data-Code-2019-013-appendix(DVD-ROM)9.zip:826.1MB

As part of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. This data collection is a compilation of Earthquake observation data acquired in the Horonobe Underground Research Project (Phase II).

JAEA Reports

Development of neutron transport calculation codes for 3-D hexagonal geometry, 2; Improvement and enhancement of the MINISTRI code

Sugino, Kazuteru; Takino, Kazuo

JAEA-Data/Code 2019-011, 110 Pages, 2020/01

JAEA-Data-Code-2019-011.pdf:3.37MB

A deterministic discrete ordinates method (SN method) transport calculation code for three-dimensional hexagonal geometry has been developed as the MINISTRI code (Ver. 7.0). MINISTRI is based on the triangle-mesh finite difference method, which can perform neutron transport calculations with high accuracy for cores of fast power reactors and assemblies of the Russian BFS critical facility. The present study has derived a proper scheme for remarkably improving the convergence of MINISTRI by investigating the issue of previous MINISTRI (Ver. 1.1), which sometimes plays a poor convergence performance in calculations for large-scale power reactor cores. The verification test of improved MINISTRI has been carried out for various cores by setting the reference result as the multi-group Monte-Carlo calculation with the same cross-sections as used in MINISTRI. As a result, it is found that the agreements are within 0.1% for eigenvalues and within 0.7% for power distributions. Thus, the satisfying accuracy of MINISTRI has been confirmed. In order to reduce the calculation time, the initial diffusion calculation scheme and the parallel processing have been implemented. As a result, the calculation time is reduced to the approximately one tenth compared with previous MINISTRI. Furthermore, adoption of the treatment of the anisotropic cell streaming effect, preparation of the perturbation calculation tool, implementation of the function for specification of the triangle-mesh-wise material and merging of the hexagonal-mesh calculation code MINIHEX have been carried out. Thus, the versatility of MINISTRI has been enhanced.

Journal Articles

Conceptual study on a novel method for detecting nuclear material using a neutron source

Komeda, Masao; Toh, Yosuke

Annals of Nuclear Energy, 135, p.106993_1 - 106993_6, 2020/01

 Times Cited Count:0

This paper presents a conceptual study of a novel active method using a neutron source. The main feature of this new method is the fast rotation of a neutron source in order to derive the fission neutron counts and applying the counts to detect the nuclear material. Irradiating neutrons to a container that involves nuclear material, the measurement data include both neutrons from the neutron source and fission neutrons. However, if the neutron source is rotated quite fast, the components of the irradiation neutrons and fission neutrons are separated. Since this novel method does not require an expensive D-T tube, this new system is expected to be affordable and easy to assemble.

Journal Articles

Mineral composition characteristics of radiocesium sorbed and transported sediments within the Tomioka river basin in Fukushima Prefecture

Hagiwara, Hiroki; Konishi, Hiromi*; Nakanishi, Takahiro; Fujiwara, Kenso; Iijima, Kazuki; Kitamura, Akihiro

Journal of Environmental Radioactivity, 211, p.106042_1 - 106042_10, 2020/01

Journal Articles

Material characterization of the VULCANO corium concrete interaction test with concrete representative of Fukushima Daiichi Nuclear Plants

Brissonneau, L.*; Ikeuchi, Hirotomo; Piluso, P.*; Gousseau, J.*; David, C.*; Testud, V.*; Roger, J.*; Bouyer, V.*; Kitagaki, Toru; Nakayoshi, Akira; et al.

Journal of Nuclear Materials, 528, p.151860_1 - 151860_18, 2020/01

Journal Articles

Fracture limit of high-burnup advanced fuel cladding tubes under loss-of-coolant accident conditions

Narukawa, Takafumi; Amaya, Masaki

Journal of Nuclear Science and Technology, 57(1), p.68 - 78, 2020/01

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

18551 (Records 1-20 displayed on this page)