Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of imaging system with ultra-high spatial resolution aiming to detect alpha-dust (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2019-038, 57 Pages, 2020/03

JAEA-Review-2019-038.pdf:4.6MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Imaging System with Ultra-high Spatial Resolution Aiming to Detect Alpha-dust". In the present study, we have developed a prototype of a system aiming to elucidate the behavior of alpha-dust generated at the time of debris retrieval. In this system, alpha-ray is first converted to visible light by novel scintillator. Then, imaging with ultra-high resolution will be possible using a lens and an Si-semiconductor camera (CMOS camera). Also, it will be possible to identify the species of alpha-ray emitting nuclides by unfolding of the spectra. The demonstration tests of the system will be conducted for dust samplers at the Plutonium Fuel Development Center, JAEA. In the development of the present system, it is important to use scintillator whose emission wavelength is sensitive to the CMOS camera as well as high emission scintillator. Considering these conditions, the key technology will be the improvement of the purity of crystals and optimization of the shapes of the materials including powers.

JAEA Reports

Development of technology to prevent scattering of radioactive materials in fuel debris retrieval (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-037, 90 Pages, 2020/03

JAEA-Review-2019-037.pdf:7.0MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology to Prevent Scattering of Radioactive Materials in Fuel Debris Retrieval". The objective of the present study is to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles at the time of debris retrieval in Fukushima Daiichi Nuclear Power Station. In addition, as measures to prevent scattering, we will evaluate and develop methods by experiments and simulation as to; (1) a method to suppress the scattering with minimum amount of water utilizing water spray etc., and (2) a method to suppress the scattering by solidifying fuel debris.

JAEA Reports

Technical design of the pressure-resistant chamber for open inspections of the storage containers of nuclear fuel materials

Marufuji, Takato; Sato, Takumi; Ito, Hideaki; Suzuki, Hisashi; Fujishima, Tadatsune; Nakano, Tomoyuki

JAEA-Technology 2019-006, 22 Pages, 2019/05

JAEA-Technology-2019-006.pdf:2.84MB

Radioactive contamination incident occurred at Plutonium Fuel Research Facility (PFRF) in Oarai Research and Development Institute, Japan Atomic Energy Agency on June 6, 2017. During inspection work of storage container containing nuclear fuel materials, the PVC bag packaging in the storage container ruptured when a worker opened the lid in the hood, and a part of contents was spattered over the room. The cause of the increase of internal pressure of the storage container was gas generation by alpha radiolysis of the epoxy resin mixed with nuclear fuel materials. Opening inspection of about 70 similar containers stored in PFRF has been planned to confirm the condition of the contents and to stabilize the stored materials containing organic compounds. For safe and reliable open inspection of the storage containers with high internal pressure in the glove box, it is necessary to develop a pressure-resistant chamber in which the storage containers are opened and the contents are inspected under gastight condition. This report summarizes the concerns and countermeasures of the chamber design and the design results of the chamber.

JAEA Reports

Progress report on Nuclear Safety Research Center (JFY 2015 - 2017)

Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness

JAEA-Review 2018-022, 201 Pages, 2019/01

JAEA-Review-2018-022.pdf:20.61MB

Nuclear Safety Research Center (NSRC), Sector of Nuclear Safety Research and Emergency Preparedness, Japan Atomic Energy Agency (JAEA) is conducting technical support to nuclear safety regulation and safety research based on the Mid-Long Term Target determined by Japanese government. This report summarizes the research structure of NSRC and the cooperative research activities with domestic and international organizations as well as the nuclear safety research activities and results in the period from JFY 2015 to 2017 on the nine research fields in NSRC; (1) severe accident analysis, (2) radiation risk analysis, (3) safety of nuclear fuels in light water reactors (LWRs), (4) thermohydraulic behavior under severe accident in LWRs, (5) materials degradation and structural integrity, (6) safety of nuclear fuel cycle facilities, (7) safety management on criticality, (8) safety of radioactive waste management, and (9) nuclear safeguards.

Journal Articles

Delayed $$gamma$$-ray spectroscopy combined with active neutron interrogation for nuclear security and safeguards

Koizumi, Mitsuo; Rossi, F.; Rodriguez, D.; Takamine, Jun; Seya, Michio; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.

EPJ Web of Conferences, 146, p.09018_1 - 09018_4, 2017/09

 Times Cited Count:2 Percentile:10.14

Journal Articles

Delayed gamma-ray analysis for characterization of fissile nuclear materials

Koizumi, Mitsuo; Rossi, F.; Rodriguez, D.; Takamine, Jun; Seya, Michio; Bogucarska, T.*; Crochemore, J.-M.*; Varasano, G.*; Abbas, K.*; Pedersen, B.*; et al.

EUR-28795-EN (Internet), p.868 - 872, 2017/00

Journal Articles

Challenge to ultra-trace analytical techniques of nuclear materials in environmental samples for safeguards at JAERI; Methodologies for physical and chemical form estimation

Usuda, Shigekazu; Yasuda, Kenichiro; Kokubu, Yoko; Esaka, Fumitaka; Lee, C. G.; Magara, Masaaki; Sakurai, Satoshi; Watanabe, Kazuo; Hirayama, Fumio; Fukuyama, Hiroyasu; et al.

International Journal of Environmental Analytical Chemistry, 86(9), p.663 - 675, 2006/08

 Times Cited Count:13 Percentile:59.07(Chemistry, Analytical)

The IAEA introduced the environmental sample analysis method, as a powerful tool to detect undeclared nuclear activities, into strengthened safeguards system. The principle of the method is that nuclear signatures can be evidenced if trace amount of nuclear materials in environmental samples taken from inside and outside of nuclear facilities are accurately analyzed. Currently, isotope ratios of uranium and plutonium in "swipe" samples are measured, which are collected in nuclear facilities. In future, the subject of environmental sample analysis will expand to soil, sediment, vegetation, water and airborne dust taken from outside of the nuclear facilities. If physical and chemical form of the nuclear materials is identified, we may estimate their origin, treatment process and migration behavior. This paper deals with the developed analytical techniques for the safeguards environmental samples, the current R&D on techniques related to estimation of the physical and chemical form, and possible analytical methodologies applicable to ultra-trace amounts of nuclear materials.

JAEA Reports

Materials Science Symposium "Materials Science using Accelerators"

Ishii, Tetsuro; Asai, Masato; Chimi, Yasuhiro

JAERI-Conf 2005-006, 144 Pages, 2005/07

JAERI-Conf-2005-006.pdf:10.42MB

The facility of the JAERI-Tokai tandem accelerator and its booster has been contributing to advancing heavy-ion sciences in the fields of nuclear physics, nuclear chemistry, atomic and solid-state physics and materials science, taking advantage of its prominent performance of heavy-ion acceleration. This facility was recently upgraded by changing the acceleration tubes and installing an ECR ion-source at the terminal. The radioactive nuclear beam facility (TRIAC) was also installed by the JAERI-KEK joint project. On this occasion, this meeting was held in order to provide a new step for the advancement of heavy-ion science, and to exchange information on recent activities and future plans using the tandem facility as well as on promising new experimental techniques. This meeting was held at Tokai site of JAERI on January 6th and 7th in 2005, having 24 oral presentations, and was successfully carried out with as many as 90 participants and lively discussions among scientists from all the fields of heavy-ion science.

JAEA Reports

Annual report on the services for chemical analysis and scientific glassblowing in the fiscal year 2001 and 2002

Ito, Mitsuo; Obara, Kazuhiro; Toida, Yukio*; Suzuki, Daisuke; Gunji, Katsubumi*; Watanabe, Kazuo

JAERI-Review 2004-007, 65 Pages, 2004/03

JAERI-Review-2004-007.pdf:5.53MB

no abstracts in English

JAEA Reports

JAERI Tandem annual report 2002; April 1, 2002 - March 31, 2003

Department of Materials Science

JAERI-Review 2003-028, 173 Pages, 2003/11

JAERI-Review-2003-028.pdf:8.28MB

This annual report describes research activities which have been performed with the JAERI tandem accelerator from April 1, 2002 to March 31, 2003. Summary reports of 54 papers, and lists of publication, personnel and cooperative research with universities are contained.

JAEA Reports

Nuclear Energy System Department annual report; April 1, 2002 - March 31, 2003

Department of Nuclear Energy System

JAERI-Review 2003-023, 232 Pages, 2003/09

JAERI-Review-2003-023.pdf:16.58MB

The Department has carried out researches and developments (R&Ds) of innovative nuclear energy system and their related fundamental technologies to ensure the long-term energy supply in Japan. The report deals with the R&Ds of an innovative water reactor, called Reduced-Moderation Water Reactor (RMWR), which has the capability of multiple recycling and breeding of plutonium using light water reactor technologies. In addition, as basic studies and fundamental researches of nuclear energy system in general, described are intensive researches in the fields of reactor physics, thermal-hydraulics, nuclear data, nuclear fuels, and materials. These activities are essential not only for the R&Ds of innovative nuclear energy systems but also for the improvement of safety and reliability of current nuclear energy systems. The maintenance and operation of reactor engineering facilities belonging to the Department support experimental activities.

JAEA Reports

Proceedings of the 3rd International Symposium on Material Chemistry in Nuclear Environment (MATERIAL CHEMISTRY '02, MC '02); March 13-15, 2002, Tsukuba

MC'02 Sympsoium Committee

JAERI-Conf 2003-001, 451 Pages, 2003/05

JAERI-Conf-2003-001.pdf:30.73MB

The volume contains all presented papers during the the 3rd International Symposium on Material Chemistry in Nuclear Environment: MATERIAL CHEMISTRY '02 (MC'02), held March 13-15, 2002. The purpose of this symposium is to provide an international forum for the discussion of recent progress in the field of materials chemistry in nuclear environments. This symposium intends to build on the success of the previous symposiums held in Tsukuba in 1992 and 1996. The topics discussed in the symposium MC'02 are Chemical Reaction and Thermodynamics, Degradation Phenomena, New Characterization Technology, Fabrication and New Materials, Composite Materials, Surface Modification, and Computational Science.

JAEA Reports

Establishment of a clean chemistry laboratory at JAERI; Clean Laboratory for Environmental Analysis and Research (CLEAR)

Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo; Esaka, Fumitaka; Miyamoto, Yutaka; Yasuda, Kenichiro; Gunji, Katsubumi*; Yamamoto, Yoichi; Takahashi, Tsukasa; Sakurai, Satoshi; et al.

JAERI-Tech 2002-103, 141 Pages, 2003/02

JAERI-Tech-2002-103.pdf:10.38MB

The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for ultra trace analyses of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. The CLEAR meets double requirements of a cleanroom and for handling of nuclear materials. Much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using corrosive acids. The air conditioning and purification system, experimental equipment, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials in environmental samples.

JAEA Reports

JAERI Tandem annual report 2001; April 1, 2001 - March 31, 2002

Department of Materials Science

JAERI-Review 2002-029, 152 Pages, 2002/11

JAERI-Review-2002-029.pdf:6.56MB

no abstracts in English

JAEA Reports

JAERI Tandem annual report 2000; April 1, 2000 - March 31, 2001

Department of Materials Science

JAERI-Review 2001-030, 147 Pages, 2001/11

JAERI-Review-2001-030.pdf:6.99MB

no abstracts in English

JAEA Reports

Proceedings of the Symposium on the Joint Research Project between JAERI and Universities; Status and Perspective of the Advanced Radiation Technology Project, January 27, 1999, National Education Center, Tokyo, Japan

Committee for the Joint Research Project on the Advanced Radiation Technology; Committee for the Collaborative Research on the Advanced Radiation Technology

JAERI-Conf 2000-008, 113 Pages, 2000/06

JAERI-Conf-2000-008.pdf:11.5MB

no abstracts in English

JAEA Reports

User manual of data-free-way distributed database for advanced nuclear materials

*; Shindo, Masami; Fujita, Mitsutane*; *; Tachi, Yoshiaki*; Kano, Shigeki*

JAERI-Tech 96-021, 24 Pages, 1996/05

JAERI-Tech-96-021.pdf:1.62MB

no abstracts in English

Journal Articles

Analysis of nuclear fuels, reactor and environmental materials

Watanabe, Kazuo;

Bunseki, 1993(11), p.883 - 889, 1993/00

no abstracts in English

Journal Articles

System design of pilot data-free-way; Distributed database for advanced nuclear materials

Nakajima, Hajime; ; *; Ueno, Fumiyoshi*; Fujita, Mitsutane*; *; Iwata, Shuichi*

Journal of Nuclear Materials, 191-194, p.1046 - 1050, 1992/00

 Times Cited Count:4 Percentile:56.82(Materials Science, Multidisciplinary)

no abstracts in English

31 (Records 1-20 displayed on this page)