Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kenzhina, I.*; Ishitsuka, Etsuo; Ho, H. Q.; Sakamoto, Naoki*; Okumura, Keisuke; Takemoto, Noriyuki; Chikhray, Y.*
Fusion Engineering and Design, 164, p.112181_1 - 112181_5, 2021/03
Tritium release into the primary coolant during operation of the JMTR (Japan Materials Testing Reactor) and the JRR-3M (Japan Research Reactor-3M) had been studied. It is found that the recoil release by Li(n
,
)
H reaction, which comes from a chain reaction of beryllium neutron reflectors, is dominant. To prevent tritium recoil release, the surface area of beryllium neutron reflectors needs to be minimum in the core design and/or be shielded with other material. In this paper, as the feasibility study of the tritium recoil barrier for the beryllium neutron reflectors, various materials such as Al, Ti, V, Ni, and Zr were evaluated from the viewpoint of the thickness of barriers, activities after long-term operations, and effects on the reactivities. From the results of evaluations, Al would be a suitable candidate as the tritium recoil barrier for the beryllium neutron reflectors.
Okagaki, Yuria; Yonomoto, Taisuke; Ishigaki, Masahiro; Hirose, Yoshiyasu
Fluids (Internet), 6(2), p.80_1 - 80_17, 2021/02
Saito, Shimpei*; De Rosis, A.*; Fei, L.*; Luo, K. H.*; Ebihara, Kenichi; Kaneko, Akiko*; Abe, Yutaka*
Physics of Fluids, 33(2), p.023307_1 - 023307_21, 2021/02
A Boiling phenomenon in a liquid flow field is known as forced-convection boiling. We numerically investigated the boiling system on a cylinder in a flow at a saturated condition. To deal with such a phenomenon, we developed a numerical scheme based on the pseudopotential lattice Boltzmann method. The collision was performed in the space of central moments (CMs) to enhance stability for high Reynolds numbers. Furthermore, additional terms for thermodynamic consistency were derived in a CMs framework. The effectiveness of the model was tested against some boiling processes, including nucleation, growth, and departure of a vapor bubble for high Reynolds numbers. Our model can reproduce all the boiling regimes without the artificial initial vapor phase. We found that the Nukiyama curve appears even though the focused system is the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime.
Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*
JAEA-Review 2020-050, 69 Pages, 2021/01
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Basic study for On-Line Monitoring of Tiny Particles including Alpha Emitters by Aerosol Time-Of-Flight Mass Spectroscopy" conducted in FY2019.
Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*
JAEA-Review 2020-044, 79 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" Conducted in FY2019. In this study, a gamma-ray imaging detector, ETCC, will be improved to operate under high dose conditions, and a portable system will be constructed to be installed in the Fukushima Daiichi Nuclear PowerStation (1F). In addition, the development and combination of ETCC-based quantitative radioactivity distribution analysis methods will lead to innovative advances in the six key issues to be solved for the decommissioning of the 1F. This system will enable us to quantitatively visualize the three-dimensional radiation distribution and its origin.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2020-039, 59 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of high-resolution imaging camera for alpha dust" conducted in FY2019. We have developed an imaging camera with a position resolution of less than approximately 10 m to monitor alpha dust in the nuclear plant during the decommissioning process, because the operators avoid to drawing in such dusts. Moreover, we have developed real-time monitor system with optical fiber and scintillator under high dose-rate condition.
Collaborative Laboratories for Advanced Decommissioning Science; Waseda University*
JAEA-Review 2020-035, 102 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the “Estimation of the In-Depth Debris Status of Fukushima Unit-2 and Unit-3 with Multi-Physics Modeling". Continuous update on understanding of the damaged Fukushima reactors is important for safe and efficient decommissioning of the reactors. This study aims to estimate the in-depth debris status of the damaged Fukushima Unit-2 and Unit-3 through multi-physics modeling, which comprises of MPS method, simulated molten debris relocation experiment and high-temperature melt property data acquision in the three-year project from FY2019.
Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*
JAEA-Review 2020-033, 84 Pages, 2021/01
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles" conducted in FY2019.
Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Advanced Industrial Science and Technology*
JAEA-Review 2020-027, 27 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of radiation hard diamond image sensing devices". The research objective of this project is to develop image sensing devices which work under the high radiation condition. The devices will be realized using radiation hard diamond semiconductor devices as charge transfer devices and photodetectors. The research project has mainly two targets such as to confirm charge coupled devices operation on diamond unipolar devices and to characterize photo conductivity of diamond detectors.
Malins, A.; Imamura, Naohiro*; Niizato, Tadafumi; Takahashi, Junko*; Kim, M.; Sakuma, Kazuyuki; Shinomiya, Yoshiki*; Miura, Satoru*; Machida, Masahiko
Journal of Environmental Radioactivity, 226, p.106456_1 - 106456_12, 2021/01
Times Cited Count:0 Percentile:100(Environmental Sciences)Kenzhina, I.*; Ishitsuka, Etsuo; Okumura, Keisuke; Ho, H. Q.; Takemoto, Noriyuki; Chikhray, Y.*
Journal of Nuclear Science and Technology, 58(1), p.1 - 8, 2021/01
Times Cited Count:0 Percentile:100(Nuclear Science & Technology)The sources and mechanisms for the tritium release into the primary coolant in the JMTR and the JRR-3M containing beryllium reflectors are evaluated. It is found that the recoil release from chain reaction of Be is dominant and its calculation results agree well with trends derived from the measured variation of tritium concentration in the primary coolant. It also indicates that the simple calculation method used in this study for the tritium recoil release from the beryllium reflectors can be utilized for an estimation of the tritium release into the primary coolant for a research and testing reactors containing beryllium reflectors.
Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01
Times Cited Count:0 Percentile:100(Physics, Applied)Wang, Z.; Duan, G.*; Koshizuka, Seiichi*; Yamaji, Akifumi*
Nuclear Power Plant Design and Analysis Codes, p.439 - 461, 2021/00
Toigawa, Tomohiro; Tsubata, Yasuhiro; Kai, Takeshi; Furuta, Takuya; Kumagai, Yuta; Matsumura, Tatsuro
Solvent Extraction and Ion Exchange, 39(1), p.74 - 89, 2021/00
Times Cited Count:0 Percentile:100(Chemistry, Multidisciplinary)Absorbed-dose estimation is essential for evaluation of the radiation feasibility of minor-actinide-separation processes. We propose a dose-evaluation method based on radiation permeability, with comparisons of heterogeneous structures seen in the solvent-extraction process, such as emulsions forming in the mixture of the organic and aqueous phases. A demonstration of radiation-energy-transfer simulation is performed with a focus on the minor-actinide-recovery process from high-level liquid waste with the aid of the Monte Carlo radiation-transport code PHITS. The simulation results indicate that the dose absorbed by the extraction solvent from alpha ray depends upon the emulsion structure, and that from beta and gamma ray depends upon the mixer-settler-apparatus size. Non-negligible contributions of well-permeable gamma rays were indicated in terms of the plant operation of the minor-actinide-separation process.
Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*
JAEA-Review 2020-029, 55 Pages, 2020/12
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Interdisciplinary Evaluation of Biological Effect of Internal Exposure by Inhaling Alpha-ray Emitting Nuclides Represented by Radon" conducted in FY2019.
Kitamura, Akira; Yoshida, Yasushi*; Goto, Takahiro*; Shibutani, Sanae*
Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(2), p.58 - 71, 2020/12
Evaluation and estimation of solubility values are required for a performance assessment of geological disposal of high-level radioactive and TRU wastes. Selection of solubility-limiting solid phases (SSPs) that control the solubility of radionuclides is necessary for the evaluation and estimation of solubility values. The authors have developed a methodology for selection of the SSP through a calculation of saturation indices (SIs) using thermodynamic database to show a transparent procedure for the selection. Literature survey should be performed to confirm decision of the SSP from candidate SSPs which generally have larger SIs from realistic point of view for precipitation and solubility control. The authors have selected the SSPs for the elements of interest for the latest Japanese performance assessment in bentonite and cement porewaters after grouping various water compositions.
Goto, Akira; Sasaki, Akimichi*; Komatsu, Tetsuya; Miwa, Atsushi*; Terusawa, Shuji*; Kagohara, Kyoko*; Shimada, Koji
JAEA-Research 2020-013, 88 Pages, 2020/11
Improvement of the investigation techniques to identify active faults is important for the implementation of geological disposal projects from the viewpoint of avoiding locations where permeability increases due to fault displacement. Generally, the existence of active faults is confirmed by aerial photography interpretation of fault displacement topography, which is a topographical trace of fault movement, and on-site geological surveys. However, the investigation method for cases where the topographical traces are unclear is not sufficiently developed. Therefore, to improve existing topographical methods, this study deciphered lineaments up to the rank of poorly defined features, which are almost neglected in general active fault research. The investigation area is one of the geodetic strain concentration zone, called the southern Kyushu shear zone, where the seismogenic faults of the 1997 Kagoshima northwest earthquakes are concealed. We conducted aerial photography interpretation of 62 sheets of 1/25,000 topographic maps, and obtained 1,327 lineaments. Distribution density, direction and length of lineaments were also investigated with topographic and geologic information. As a result, it was clarified that the east-west lineaments in the south Kyushu shear zone predominate in the western part, and the lineaments are densely distributed in the aftershock distribution area of the Kagoshima northwest earthquake. Along with these results, we have compiled a catalog of typical 13 lineaments based on combinations of clarity, direction, length and geomorphic characters of lineaments.
Nakagawa, Yosuke; Sukegawa, Hidetoshi; Naoi, Yosuke; Inoue, Naoko; Noro, Naoko; Okuda, Masahiro
Dai-41-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2020/11
The physical protection exercise field, a facility equipped with various types of equipment such as sensors, cameras and fences that are used at nuclear facilities, is an effective tool for training on nuclear security at ISCN/JAEA, if it is carried out in-person. Due to the COVID-19 pandemic, the virtual tour of the facility is developed for the online training courses so that they could be more effective. The article explains the initial development of the virtual tour with some improvement inspired by using it on some occasions as well as a prospect of effective use of the virtual tour based on its characteristics.
Ito, Kanae; Harada, Masashi*; Yamada, Norifumi*; Kudo, Kenji*; Aoki, Hiroyuki; Kanaya, Toshiji*
Langmuir, 36(43), p.12830 - 12837, 2020/11
Times Cited Count:0 Percentile:100(Chemistry, Multidisciplinary)Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Hanamuro, Takahiro; Shimada, Akiomi; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; et al.
JAEA-Research 2020-011, 67 Pages, 2020/10
This annual report documents the progress of research and development (R&D) in the 5th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.