検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 5 件中 1件目~5件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

リアルタイム光電子分光によるTi(0001)表面酸化反応の観察

高桑 雄二*; 小川 修一*; 石塚 眞治*; 吉越 章隆; 寺岡 有殿

触媒, 47(5), p.352 - 357, 2005/08

Ti(0001)表面酸化反応を高輝度放射光とHe-I共鳴線を用いた光電子分光でリアルタイムモニタリングした。Ti2pとO1s内殻準位,価電子帯の光電子スペクトルから求めた酸素吸着量,酸化状態,酸化膜厚,電子状態,仕事関数の時間発展から解明した酸素吸着モデルと極薄酸化膜形成過程について解説した。

論文

Real-time monitoring of oxidation on the Ti(0001) surface by synchrotron radiation photoelectron spectroscopy and RHEED-AES

高桑 雄二*; 石塚 眞治*; 吉越 章隆; 寺岡 有殿; 山内 康弘*; 水野 善之*; 頓田 英樹*; 本間 禎一*

Applied Surface Science, 216(1-4), p.395 - 401, 2003/06

 被引用回数:19 パーセンタイル:65.49(Chemistry, Physical)

SPring-8の原研軟X線ビームラインBL23SUに設置した「表面反応分析装置」を用いてTi(0001)表面のO$$_{2}$$分子による酸化素過程を放射光による光電子分光法で実時間その場観察した。また、東北大学において反射高速電子線回折(RHEED)とオージェ電子分光(AES)によっても実時間その場観察を行った。酸素分圧を2$$times$$10$$^{-7}$$ Torrから8$$times$$10$$^{-8}$$Torrの範囲とし、表面温度を473Kまたは673Kとした。光電子分光観察ではTi-2pとO-1s光電子スペクトルの時間発展を観察することで、清浄Ti表面がTiO$$_{2}$$変化する様子が観察された。また、RHEED-AES測定においては反射電子線強度とO-KLLオージェ電子強度が時間に依存した振動構造を示した。これらの実験結果から酸化されたTi(0001)表面の粗さの変化は表面の金属層の消失ばかりでなく、酸化結合状態の変化にも関係していることが明らかとなった。

口頭

Growth mechanism of graphene on Cu(111) substrates studied by in-situ photoelectron spectroscopy

小川 修一*; 山田 貴壽*; 石塚 眞治*; 吉越 章隆; 長谷川 雅考*; 寺岡 有殿; 高桑 雄二*

no journal, , 

The behavior of C atoms in vacuum annealing/cooling processes for a graphene/Cu(111) has been investigated using synchrotron radiation photoelectron spectroscopy (SR-XPS). The sample structure is graphene/Cu(111)/Al$$_{2}$$O$$_{3}$$(0001), in which graphene was grown by a thermal CVD method at 1273 K. The C 1s, O 1s, and Cu 3s SR-XPS spectra were measured in situ during annealing/cooling in vacuum. The graphene coverage at a low temperature region below 873 K is almost 1 monolayer (ML), but it decreased with increasing temperature. At 1223 K, the coverage reached 0.4 ML. This indicates the graphene decomposed and C atoms diffused into the Cu substrate. It was also found from SIMS measurement that the amount of diffused C atoms in the thermal CVD process is smaller than that after vacuum annealing. These results suggest that the C atom diffusion into the Cu occurs frequently, but the diffused C atoms do not contribute to the graphene growth on the Cu surface.

口頭

Effect of oxidation-induced strain on thermal decomposition of ultrathin oxide grown on Si(111) and Si(001) surfaces

Tang, J.*; 小川 修一*; 吉越 章隆; 西本 究*; 石塚 眞治*; 寺岡 有殿; 高桑 雄二*

no journal, , 

Although the oxide decomposition was observed to proceed via void nucleation and subsequent enlargement with SiO desorption and the void growth, it is still not clear what is a trigger to nucleate voids at SiO$$_{2}$$/Si interface. Recently, we reported that the emission of Si atom caused by the oxidation-induced strain at SiO$$_{2}$$/Si interface is likely responsible for nucleating voids. In this study, the thermal decomposition kinetics of ultrathin SiO$$_{2}$$ film on Si(001) and Si(111) surfaces have been investigated using real-time X-ray photoelectron spectroscopy with photon energy of 711 eV at JAEA beamline BLSU23, SPring-8 to confirm the void nucleation model.

口頭

Initial oxidation stage of Cu$$_{3}$$Au; Protective layer formation

岡田 美智雄*; 寺岡 有殿

no journal, , 

It has been found that Cu products containing Au keep their bodies from oxidation. In the oxidation of the Cu$$_{3}$$Au(100) surface, dissociative adsorption of O$$_{2}$$ occurs accompanied by Cu segregation on the surface. No obvious growth of Cu$$_{2}$$O was observed, even for prolonged doses of the 2.3 eV hyperthermal O$$_{2}$$ molecular beam. Thus, it was proposed that surface alloying of Cu-based material with Au works as a perfect protective layer. On the other hand, on the more open (110) surface, additional oxidation-related processes contribute to Cu$$_{2}$$O formation. Although, as on (100), Cu segregation on the (110) surface occurs, the oxidation efficiency is nearly the same for exposure of Cu(110) and Cu$$_{3}$$Au(110) to thermal O$$_{2}$$. In our recent study for the (111) surface, strong Au segregation to the top layer was found, while on the oxidized surface Cu segregation and formation of the Au rich second (47 at% Au) and third layer (45 at% Au) were found.

5 件中 1件目~5件目を表示
  • 1