Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 46

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2022

Kokubun, Yuji; Nakada, Akira; Seya, Natsumi; Nagaoka, Mika; Koike, Yuko; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.

JAEA-Review 2023-052, 118 Pages, 2024/03

JAEA-Review-2023-052.pdf:3.67MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2022. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Deuterium content and site occupancy in iron sulfide at high pressure and temperature determined using in situ neutron diffraction measurements

Abeykoon, S.*; Howard, C.*; Dominijanni, S.*; Eberhard, L.*; Kurnosov, A.*; Frost, D. J.*; Boffa Ballaran, T.*; Terasaki, Hidenori*; Sakamaki, Tatsuya*; Suzuki, Akio*; et al.

Journal of Geophysical Research; Solid Earth, 128(9), p.e2023JB026710_1 - e2023JB026710_17, 2023/09

 Times Cited Count:0 Percentile:0.01(Geochemistry & Geophysics)

Small amounts of iron sulphide minerals are found in most rocks from the Earth's mantle and as inclusions trapped in natural diamonds. Hydrogen may dissolve into iron sulphide minerals under high pressures and temperature, but is most likely lost once pressure and temperature are removed. In this study, we determined deuterium contents in iron sulphide, held under high pressure and temperature conditions, using neutron diffraction measurements with 6-ram multi-anvil press at PLANET, J-PARC. Deuterium contents in iron sulphide were measured at high-P, up to 11.4 GPa and high-T to 1300 K in in situ neutron diffraction experiments. The total deuterium content increases with both P and T. The results are used to estimate hydrogen contents of iron sulphide minerals in the deep continental lithospheric mantle, which are found to be in the range 1700-2700 ppm. This corresponds to approximately 2-3 ppm of hydrogen in the bulk mantle.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2021

Nakada, Akira; Kanai, Katsuta; Kokubun, Yuji; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei*; Kubota, Tomohiro; Hirao, Moe; Yoshii, Hideki*; Otani, Kazunori*; et al.

JAEA-Review 2022-079, 116 Pages, 2023/03

JAEA-Review-2022-079.pdf:2.77MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2021. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2020

Nakano, Masanao; Nakada, Akira; Kanai, Katsuta; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei; Kubota, Tomohiro; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; et al.

JAEA-Review 2021-040, 118 Pages, 2021/12

JAEA-Review-2021-040.pdf:2.48MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2020. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2019

Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei; Kubota, Tomohiro; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.

JAEA-Review 2020-070, 120 Pages, 2021/02

JAEA-Review-2020-070.pdf:2.47MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2019. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2018

Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.

JAEA-Review 2019-045, 120 Pages, 2020/03

JAEA-Review-2019-045.pdf:2.54MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2018. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Longitudinal measurements and beam tuning in the J-PARC linac MEBT1

Otani, Masashi*; Futatsukawa, Kenta*; Miyao, Tomoaki*; Liu, Y.*; Hirano, Koichiro; Kondo, Yasuhiro; Miura, Akihiko; Oguri, Hidetomo

Journal of Physics; Conference Series, 1350, p.012078_1 - 012078_5, 2019/12

 Times Cited Count:1 Percentile:51.97(Physics, Particles & Fields)

The Japan Proton Accelerator Research Complex (J-PARC) linac is operated with design peak current of 50 mA from 2018. For operation with such a high beam current, itis important to understand transverse and longitudinal beam properties especially in low-velocity region. A medium energy beam transport (MEBT1) line between the 3-MeV radio-frequency quadrupole linac (RFQ) and the 50-MeV drift-tube linac (DTL) is a 3-m-long transport line to match the beam to the DTL and produce a macro pulse configuration for a 3-GeV rapid-cycling synchrotron (RCS). In this paper, recent measurements and beam tuning results in MEBT1 will be presented.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2017

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; et al.

JAEA-Review 2018-028, 120 Pages, 2019/02

JAEA-Review-2018-028.pdf:2.69MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2017. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Numerical and experimental study of H$$^{-}$$ beam dynamics in J-PARC LEBT

Shibata, Takanori*; Ikegami, Kiyoshi*; Liu, Y.*; Miura, Akihiko; Naito, Fujio*; Nammo, Kesao*; Oguri, Hidetomo; Okoshi, Kiyonori; Otani, Masashi*; Shinto, Katsuhiro; et al.

Proceedings of 29th International Linear Accelerator Conference (LINAC 2018) (Internet), p.519 - 521, 2019/01

Transport process of negative hydrogen ion (H$$^{-}$$) in LEBT (Low Energy Beam Transport) is investigated by comparison of experimental and numerical results. A three dimensional Particle-In-Cell (PIC) particle transport model has been developed in order to take into account (i) axial magnetic field by two solenoids in J-PARC LEBT and (ii) radial electric field by space charge (SC) effect. Ratio of H$$^-$$ beam particles inside the RFQ (Radio Frequency Quadrupole) acceptance to the total particles at the RFQ entrance is calculated for different current conditions in LEBT solenoid 1 and 2. The results are compared with RFQ transmission rate measured in the J-PARC linac commissioning. The double peak of RFQ transmission rate to the solenoid applied current seen in the measurement is explained by the calculation results. The results indicate that presence of the LEBT orifice for differential pumping plays a role as a collimator to reduce emittance at RFQ entrance.

Journal Articles

Longitudinal bunch size measurement using an RF deflector

Otani, Masashi*; Futatsukawa, Kenta*; Hirano, Koichiro; Kondo, Yasuhiro; Miura, Akihiko; Oguri, Hidetomo; Liu, Y.*

Nuclear Instruments and Methods in Physics Research A, 908, p.313 - 317, 2018/11

 Times Cited Count:1 Percentile:11.47(Instruments & Instrumentation)

It is extremely important to diagnose beams in accelerators to improve accelerator operation. In the low velocity section of a proton or heavy ion linac, the diagnostic method for longitudinal beam properties is less established compared to that for transverse properties. We have developed a new diagnostic method for the longitudinal bunch size by utilizing an RF deflector. We evaluated the uncertainty in bunch size measurement through simulation, and it was obtained as 0.5$$^{circ}$$. In addition, we measured longitudinal beam emittance through bunch size measurements at several RF amplitudes of an upstream buncher. The measured emittance was 0.13$$pm$$0.01$$pi$$ deg$$cdot$$MeV, which was consistent with the simulation result.

Journal Articles

Application of JSME Seismic Code Case by elastic-plastic response analysis to practical piping system

Otani, Akihito*; Kai, Satoru*; Kaneko, Naoaki*; Watakabe, Tomoyoshi; Ando, Masanori; Tsukimori, Kazuyuki*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 10 Pages, 2018/07

This paper demonstrates an application result of the JSME Seismic Code Case to an actual complex piping system. The secondary coolant piping system of Japanese Fast Breeder Reactor, Monju, was selected as a representative of the complex piping systems. The elastic-plastic time history analysis for the piping system was performed and the piping system has been evaluated according to the JSME Seismic Code Case. The evaluation by the Code Case provides a reasonable result in terms of the piping fatigue evaluation that governs seismic integrity of piping systems.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2016

Nakano, Masanao; Fujita, Hiroki; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2017-037, 119 Pages, 2018/03

JAEA-Review-2017-037.pdf:2.58MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2016. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2015

Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Nagaoka, Mika; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2017-001, 115 Pages, 2017/03

JAEA-Review-2017-001.pdf:3.57MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2015. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Investigation on ultimate strength of thin wall tee pipe for sodium cooled fast reactor under seismic loading

Watakabe, Tomoyoshi; Tsukimori, Kazuyuki; Otani, Akihito*; Moriizumi, Makoto; Kaneko, Naoaki*

Mechanical Engineering Journal (Internet), 3(3), p.16-00054_1 - 16-00054_11, 2016/06

It is important to investigate the failure mode and ultimate strength of piping components in order to evaluate the seismic integrity of piping. Many failure tests of thick wall and high pressure piping for Light Water Reactors (LWRs) have been conducted, and the results suggest that the failure mode that should be considered in the design of a thick wall piping for LWRs under seismic loading is low cycle fatigue. On the other hand, Sodium cooled Fast Reactors (SFRs) is thin wall when compared to LWRs piping. Failure tests of a thin wall piping are necessary because past failure tests for LWRs piping are not enough to discuss failure behavior of a thin wall piping. Therefore, this present work investigated the failure mode and the ultimate strength of thin wall tees.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2014

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Inoue, Kazumi; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; Sakauchi, Nobuyuki*; et al.

JAEA-Review 2015-030, 115 Pages, 2015/12

JAEA-Review-2015-030.pdf:25.28MB

Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2014. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Investigation on ultimate strength of thin wall tee pipe for sodium cooled fast reactor under seismic loading

Watakabe, Tomoyoshi; Tsukimori, Kazuyuki; Otani, Akihito*; Moriizumi, Makoto; Kaneko, Naoaki*

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 8 Pages, 2015/05

Journal Articles

Study on strength of thin-walled tee pipe for fast breeder reactors under seismic loading

Watakabe, Tomoyoshi; Tsukimori, Kazuyuki; Otani, Akihito*; Moriizumi, Makoto; Kaneko, Naoaki*

Proceedings of 2014 ASME Pressure Vessels and Piping Conference (PVP 2014) (DVD-ROM), 8 Pages, 2014/07

In recent years, earthquakes over design condition were observed in Japan. Confirming the ultimate strength and design safety margin of mechanical components is important for the seismic integrity. This study focused on piping components, and it was one of the most important mechanical components for protecting boundary of coolant. Failure tests of thick-walled piping components for Light Water Reactors (LWRs) described previously in the literature. According to these tests, the failure mode of thick-walled piping components under seismic cyclic loading was low cycle fatigue. However, failure tests have scarcely been performed on thin-walled piping components pressurized at low levels for Fast Breeder Reactors (FBRs). This paper presents dynamic failure tests of thin-walled piping components in FBRs. Based on the test results, the failure mode, the ultimate strength, and the elastic-plastic behavior are discussed.

Journal Articles

Ponded melt at the boundary between the lithosphere and asthenosphere

Sakamaki, Tatsuya*; Suzuki, Akio*; Otani, Eiji*; Terasaki, Hidenori*; Urakawa, Satoru*; Katayama, Yoshinori; Funakoshi, Kenichi*; Wang, Y.*; Hernlund, J. W.*; Ballmer, M. D.*

Nature Geoscience, 6(12), p.1041 - 1044, 2013/12

 Times Cited Count:131 Percentile:96.64(Geosciences, Multidisciplinary)

The bounday between Earth's rigid lighosphere and the underlying, ductile ashenosphere is marked by a distinct siseismic discontinuity. We measure the density, viscosity and structure of basaltic magmas using high-pressure and high-temperature experiments and in situ X-ray analysis under pressure of up to 5.5 GPa. We find that the magmas rapidly become denser with increasing presure and show a viscosity minimum near 4 GPa. Magma mobility determined by the density and viscosity data exhibits a peak at pressures corresponding to depths of 120-150 km, within the asthenosphere. The diminishing mobility of magma in Earth's asthenosphere as the mlets ascend could lead to excessive melt accumulation at depths of 80-100 km, at the lithosphere-asthenosphere boundary. It is concluded that the observed seismic discontinuity at the lithosphere-asthenosphere boundary records this accumulation of melt.

Journal Articles

Study on piping response under multiple excitations; Triple shaking table test of piping having three-supporting anchors

Watakabe, Tomoyoshi; Kaneko, Naoaki*; Aida, Shigekazu*; Otani, Akihito*; Tsukimori, Kazuyuki; Moriizumi, Makoto; Kitamura, Seiji

Dynamics and Design Conference 2013 (D&D 2013) Koen Rombunshu (USB Flash Drive), 8 Pages, 2013/08

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many anchors. As the piping is excited by multiple inputs from the supporting anchors during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few tests involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and verify the validity of the analysis method by multiple excitation test. This paper reports on the result of the shaking test using triple uni-axial shaking tables and a 3-dimensional piping model.

Journal Articles

Study on piping response under multiple excitation, 1; Triple shaking table test of piping having three-supporting points

Watakabe, Tomoyoshi; Kaneko, Naoaki*; Aida, Shigekazu*; Otani, Akihito*; Moriizumi, Makoto*; Tsukimori, Kazuyuki; Kitamura, Seiji

Proceedings of 2013 ASME Pressure Vessels and Piping Conference (PVP 2013) (DVD-ROM), 8 Pages, 2013/07

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many points. As the piping is excited by multiple inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few experiments involving such multiple excitations have been performed to verify the validity of multiple excitation analysis. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and verify the validity of the analysis method by multiple excitation test. This paper reports on the result of the shaking test using triple uni-axial shaking tables and a 3-dimensional piping model.

46 (Records 1-20 displayed on this page)