検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Improvement of symbiotic performance of ${it Sinorhizobium}$ with ${it Vigna marina}$ under high salt conditions using the ion beam mutation breeding

イオンビーム突然変異育種を用いた${it Sinorhizobium}$属根粒菌の高塩条件下におけるハマアズキとの共生能力改善

丸山 雄大*; 武田 喜代子*; 友岡 憲彦*; 佐藤 勝也; 大野 豊; 横山 正*

Maruyama, Yudai*; Takeda, Kiyoko*; Tomooka, Norihiko*; Sato, Katsuya; Ono, Yutaka; Yokoyama, Tadashi*

${it Vigna marina}$ is one of wild legumes, which called as Hamaazuki, are distributed at the vicinity of the coast from tropical to sub-tropical regions and have high salt tolerance among terrestrial plants. ${it V. marina}$ can grow at 400 mM NaCl condition. Furthermore, the root nodules on ${it V. marina}$ have a symbiotic relationship with rhizobia that related to the genus ${it Sinorhizobium}$ having high stress tolerance (500 mM NaCl, 45 $$^{circ}$$C, pH 10.5). Above both symbiotic partners showed extremely high salt tolerance, however, ${it V. marina}$ cannot develop root nodules with ${it Sinorhizobium}$ at over 80 mM NaCl conditions. To improve symbiotic performance of ${it V. marina}$ with ${it Sinorhizobium}$ under high salt conditions, ${it Sinorhizobium}$ bacterial cells were irradiated by carbon ion-beam at TIARA. However, so far, we could not obtain promising mutants having good symbiotic performance with Vigna marina under high salt conditions, yet.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.