検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Dislocation core structure and motion in pure titanium and titanium alloys; A First-principles study

純チタンとチタン合金における転位芯構造と運動; 第一原理計算

都留 智仁   ; 板倉 充洋  ; 山口 正剛   ; 渡邊 千尋*; 三浦 博己*

Tsuru, Tomohito; Itakura, Mitsuhiro; Yamaguchi, Masatake; Watanabe, Chihiro*; Miura, Hiromi*

六方晶構造を有する材料は、結晶構造の異方性によって塑性変形の異方性が存在し、合金化によってその特性が大きく変化をすることが知られている。純チタンでは一般に柱面転位を主すべり系として塑性変形するが、広く用いられるAlやVを添加したTi64合金の疲労破壊は$$alpha$$相の底面で生じる。純Tiと異なり底面すべりが生じていることが実験観察によって確認されているが、その要因は知られていない。近年、第一原理計算に基づく原子モデルを用いた転位の解析が行われるようになり、詳細なメカニズムの解明が進んでいる。本研究では、HCP構造を持つチタンを対象に、合金元素の転位運動への影響を詳細に検討した。その結果、転位のすべりのPeierlsポテンシャルは柱面と底面で大きな違いがないが、AlやVの添加によって転位芯構造の安定性が変化し、すべり変形のモードが変化することを明らかにした。

The deformation mode of some titanium (Ti) alloys differs from that of pure Ti due to the presence of alloying elements in $$alpha$$-phase. Herein, we investigated all possible slip modes in pure Ti and the effects of Al and V solutes as typical additive elements on the dislocation motion in $$alpha$$-Ti alloys using density functional theory (DFT) calculations. The stacking fault (SF) energies in possible slip planes indicated that both Al and V solutes reduce the SF energy in the basal plane and, in contrast, the Al solute increases the SF energy particularly in the prismatic plane. DFT calculations were subsequently performed to simulate dislocation core structures. The energy landscape of the transition between all possible dislocation core structures and the barriers for dislocation glide in various slip planes clarified the nature of dislocation motion in pure Ti. (i) the energy of prismatic core is higher than most stable pyramidal core, and thereby dislocations need to overcome the energy barrier of the cross-slip (22.8 meV/b) when they move in the prismatic plane, (ii) the energy difference between the prismatic and basal cores is larger (127 meV/b), that indicates the basal slip does not activate, (iii) however, the Peierls barrier for motion in the basal plane is not as high (16 meV/b). Direct calculations for the dislocation core around solutes revealed that both Al and V solutes facilitate dislocation motion in the basal plane by reducing the energy difference between the prismatic and basal cores. The effect of solutes characterizes the difference in the deformation mode of pure Ti and $$alpha$$-Ti alloys.

Access

:

- Accesses

InCites™

:

パーセンタイル:64.95

分野:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.