検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Effect of hydrogen on evolution of deformation microstructure in low-carbon steel with ferrite microstructure

岡田 和歩*; 柴田 曉伸*; Gong, W.   ; 辻 伸泰*

Okada, Kazuho*; Shibata, Akinobu*; Gong, W.; Tsuji, Nobuhiro*

In this study, the deformation microstructure of hydrogen-charged ferritic-pearlitic 2Mn-0.1C steel was characterized using SEM-BSE, SEM-EBSD, TEM, and neutron diffraction. The microscopic mechanism of hydrogen-related quasi-cleavage fracture along the ${011}$ planes was also discussed. It was found that hydrogen increased the relative velocity of screw dislocations to edge dislocations, leading to a tangled dislocation morphology, even at the initial stage of deformation (strain = 0.03). In addition, the density of screw dislocations at the later stage of deformation (strain = 0.20) increased in the presence of hydrogen. Based on the experimental results, it is proposed that a high density of vacancies accumulated along ${011}$ slip planes by jog-dragging of screw dislocations, and coalescence of the accumulated vacancies led to the hydrogen-related quasi-cleavage fracture along the {011} slip planes.

Access

:

- Accesses

InCites™

:

パーセンタイル:93.62

分野:Materials Science, Multidisciplinary

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.