検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys

耐火ハイエントロピー合金に脆性的なものと延性的なものがある本質的な要因

都留 智仁   ; Han, S.*; 松浦 周太郎*; Chen, Z.*; 岸田 恭輔; Lobzenko, I.   ; Rao, S.*; Woodward, C.*; George, E.*; 乾 晴行*

Tsuru, Tomohito; Han, S.*; Matsuura, Shutaro*; Chen, Z.*; Kishida, Kyosuke; Lobzenko, I.; Rao, S.*; Woodward, C.*; George, E.*; Inui, Haruyuki*

耐火ハイエントロピー合金(RHEA)は、超高温用途への応用の可能性から注目されている。しかし、体心立方結晶をもつため面心立方HEAよりも脆く、さらに、主要なNi基超合金やFCC合金系の材料よりも著しく低いクリープ強度を示す。これらの欠点を克服し、RHEAを実用的な構造材料に発展させるためには、強度と延性を制御する要因の基礎的な理解を深める必要がある。本研究では、TiZrHfNbTaとVNbMoTaWという2つのモデルRHEAを調査し、前者は77Kまで塑性圧縮可能であるのに対し、後者は298K以下では圧縮不可能であることを示した。TiZrHfNbTaの六方最密充填(HCP)元素は、すべての構成元素がBCCであるVNbMoTaWと比較して、転位芯エネルギーを下げ、格子歪みを大きくし、せん断弾性率を下げることで、高い延性と相対的に高い降伏強度につながることがわかった。転位芯構造はVNbTaMoWではコンパクトで、TiZrHfNbTaでは拡張しており、2つのRHEAで異なる滑り面が活性化していることがわかった。これらは、いずれもHCP元素の濃度に起因していることが第一原理計算により明らかになった。この結果は、HCP元素とBCC元素の比率に関連した電子構造の変化を利用して、強度、延性、すべり挙動を制御し、より効率的な発電所や輸送のための次世代高温材料を開発できることを実証している。

Refractory high-entropy alloys (RHEAs) have attracted attention because of their potential for use in ultrahigh-temperature applications. Unfortunately, their body-centered-cubic (BCC) crystal structures make them more brittle than the ductile and fracture-resistant face-centered-cubic (FCC) HEAs. RHEAs also display significantly lower creep strengths than a leading Ni-base superalloy and its FCC matrix. To overcome these drawbacks and develop RHEAs into viable structural materials, improved fundamental understanding is needed of factors that control strength and ductility. Here we investigate two model RHEAs, TiZrHfNbTa and VNbMoTaW, and show that the former is plastically compressible down to 77 K, whereas the latter is not below 298 K. We find that hexagonal close-packed (HCP) elements in TiZrHfNbTa lower its dislocation core energy, increase its lattice distortion, and lower its shear modulus relative to VNbMoTaW whose elements are all BCC, leading to the formers higher ductility and modulus-normalized yield strength. Consistent with our yield strength models, primarily screw dislocations are present in TiZrHfNbTa after deformation, but equal numbers of edge and screw segments in VNbTaMoW. Dislocation cores are compact in VNbTaMoW and extended in TiZrHfNbTa, and different macroscopic slip planes are activated in the two RHEAs, which we attribute to the concentration of HCP elements. Our findings demonstrate how electronic structure changes related to the ratio of HCP to BCC elements can be used to control strength, ductility, and slip behavior to develop the next generation of high-temperature materials for more efficient power plants and transportation.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.