検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Acoustically driven magnon-phonon coupling in a layered antiferromagnet

層状反強磁性体における音響励起マグノン-フォノン結合

Lyons, T. P.*; Puebla, J.*; 山本 慧   ; Deacon, R. S.*; Hwang, Y.*; 石橋 幸治*; 前川 禎通*; 大谷 義近*

Lyons, T. P.*; Puebla, J.*; Yamamoto, Kei; Deacon, R. S.*; Hwang, Y.*; Ishibashi, Koji*; Maekawa, Sadamichi*; Otani, Yoshichika*

Harnessing the causal relationships between mechanical and magnetic properties of van der Waals materials presents a wealth of untapped opportunity for scientific and technological advancement, from precision sensing to novel memories. This can, however, only be exploited if the means exist to efficiently interface with the magnetoelastic interaction. Here, we demonstrate acoustically-driven spin-wave resonance in a crystalline antiferromagnet, chromium trichloride, via surface acoustic wave irradiation. The resulting magnon-phonon coupling is found to depend strongly on sample temperature and external magnetic field orientation, and displays a high sensitivity to extremely weak magnetic anisotropy fields in the few mT range. Our work demonstrates a natural pairing between power-efficient strain-wave technology and the excellent mechanical properties of van der Waals materials, representing a foothold towards widespread future adoption of dynamic magneto-acoustics.

Access

:

- Accesses

InCites™

:

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.