検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 236 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Unveiling spin-dependent unoccupied electronic states of Co$$_{2}$$MnGe (Ga) film via Ge (Ga) $$L_{2,3}$$ absorption spectroscopy

吉川 智己*; Antonov, V. N.*; 河野 嵩*; 鹿子木 将明*; 角田 一樹; 宮本 幸治*; 竹田 幸治; 斎藤 祐児; 後藤 一希*; 桜庭 裕弥*; et al.

Physical Review B, 102(6), p.064428_1 - 064428_7, 2020/08

 被引用回数:0

X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy were applied at the Ge (Ga) $$L_{2,3}$$ edge to unravel the spin-resolved unoccupied electronic states of Co$$_{2}$$MnGe (Ga). Complicated spectral features were observed in both XAS and XMCD spectra. For their interpretation, we compared the experimental XAS and XMCD spectra with the calculated Ge (Ga) 4$$s$$ and 4$$d$$ orbital partial density of states. The comparison enabled a qualitative explanation of the XMCD spectra as the difference between the majority and minority-spin unoccupied density of states summed over the 4$$s$$ and 4$$d$$ orbitals. Our finding provides a new approach to uncover the spin-split partial density of states above the Fermi level.

論文

Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi$$_{2}$$Te$$_{4}$$

Shikin, A. M.*; Estyunin, D. A.*; Klimovskikh, I. I.*; Filnov, S. O.*; Kumar, S.*; Schwier, E. F.*; 宮本 幸治*; 奥田 太一*; 木村 昭夫*; 黒田 健太*; et al.

Scientific Reports (Internet), 10, p.13226_1 - 13226_13, 2020/08

Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator MnBi$$_{2}$$Te$$_{4}$$ and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures, light polarizations and photon energies. We have distinguished both large and reduced gaps at the DP in the ARPES dispersions, which remain open above the N$'{e}$el temperature of $$T_textrm{N}$$ = 24.5 K. We propose that the gap above $$T_textrm{N}$$ remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the large gap sample and apparently significantly reduced effective magnetic moment for the reduced gap sample.

論文

Manipulation of saturation magnetization and perpendicular magnetic anisotropy in epitaxial Co$$_{x}$$Mn$$_{4-x}$$N films with ferrimagnetic compensation

伊藤 啓太*; 安富 陽子*; Zhu, S.*; Nurmamat, M.*; 田原 昌樹*; 都甲 薫*; 秋山 了太*; 竹田 幸治; 斎藤 祐児; 小口 多美夫*; et al.

Physical Review B, 101(10), p.104401_1 - 104401_8, 2020/03

 被引用回数:0 パーセンタイル:100(Materials Science, Multidisciplinary)

Spintronics devices utilizing a magnetic domain wall motion have attracted increasing attention, and ferrimagentic materials with almost compensated magnetic moments are highly required to realize the fast magnetic domain wall motion. Here, we report a key function for this purpose in anti-perovskite Co$$_{x}$$Mn$$_{4-x}$$N films. Perpendicular magnetization emerges for $$0.8 leq x$$, and the saturation magnetization reaches a minimum value at $$x = 0.8$$.

論文

Element-specific density of states of Co$$_{2}$$MnGe revealed by resonant photoelectron spectroscopy

河野 嵩*; 鹿子木 将明*; 吉川 智己*; Wang, X.*; 角田 一樹*; 宮本 幸治*; 室 隆桂之*; 竹田 幸治; 斎藤 祐児; 後藤 一希*; et al.

Physical Review B, 100(16), p.165120_1 - 165120_6, 2019/10

 被引用回数:1 パーセンタイル:100(Materials Science, Multidisciplinary)

Resonant photoelectron spectroscopy at the Co and Mn 2${it p}$ core absorption edges of half-metallic Co$$_{2}$$MnGe has been performed to determine the element-specific density of states (DOS). A significant contribution of the Mn 3${it d}$ partial DOS near the Fermi level ($$E_{F}$$) was clarified by measurement at the Mn 2${it p}$ absorption edge. Further analysis by first-principles calculation revealed that it has $$t_{2g}$$ symmetry, which must be responsible for the electrical conductivity along the line perpendicular to the film plane. The dominant normal Auger contribution observed at the Co 2${it p}$ absorption edge indicates delocalization of photoexcited Co 3${it d}$ electrons. The difference in the degrees of localization of the Mn 3${it d}$ and Co 3${it d}$ electrons in Co$$_{2}$$MnGe is explained by the first-principles calculation.

論文

Magnetic-impurity-induced modifications to ultrafast carrier dynamics in the ferromagnetic topological insulators Sb$$_{2-x}$$V$$_{x}$$Te$$_{3}$$

角田 一樹*; 鹿子木 将明*; Reimann, J.*; Nurmamat, M.*; 後藤 伸一*; 竹田 幸治; 斎藤 祐児; Kokh, K. A.*; Tereshchenko, O. E.*; G$"u$dde, J.*; et al.

New Journal of Physics (Internet), 21(9), p.093006_1 - 093006_8, 2019/09

 被引用回数:1 パーセンタイル:60.52(Physics, Multidisciplinary)

We systematically investigate the magnetic, structural and electronic properties and the ultrafast carrier dynamics in a series of V-doped Sb$$_{2}$$Te$$_{3}$$ samples of composition Sb$$_{2-x}$$V$$_{x}$$Te$$_{3}$$ with x = 0, 0.015 and 0.03. Element specific X-ray magnetic circular dichroism signifies that the ferromagnetism of V-doped Sb$$_{2}$$Te$$_{3}$$ is governed by the p-d hybridization between the host carrier and the magnetic dopant. Time- and angle-resolved photoemission spectroscopy has revealed that the V impurity induced states underlying the topological surface state (TSS) add scattering channels that significantly shorten the duration of transient surface electrons down to 100 fs scale. This is in a sharp contrast to the prolonged duration reported for pristine samples though the TSS is located inside the bulk energy gap of the host in either magnetic or non-magnetic cases. It implies the presence of a mobility gap in the bulk energy gap region of the host material.

論文

Electronic structure of the high-$$T_C$$ ferromagnetic semiconductor (Ga,Fe)Sb; X-ray magnetic circular dichroism and resonance photoemission spectroscopy studies

坂本 祥哉*; Tu, N. T.*; 竹田 幸治; 藤森 伸一; Hai, P. N.*; Anh, L. D.*; 若林 勇希*; 芝田 悟朗*; 堀尾 眞史*; 池田 啓祐*; et al.

Physical Review B, 100(3), p.035204_1 - 035204_8, 2019/07

The electronic structure and the magnetism of the ferromagnetic semiconductor (Ga,Fe)Sb, whose Curie temperature $$T_{rm C}$$ can exceed room temperature, were investigated by means of X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD), and resonance photoemission spectroscopy (RPES). The line-shape analyses of the XAS and XMCD spectra suggest that the ferromagnetism is of intrinsic origin. The orbital magnetic moments deduced using XMCD sum rules were found to be large, indicating that there is a considerable 3$$d^{6}$$ contribution to the ground state of Fe. From RPES, we observed a strong dispersive Auger peak and nondispersive resonantly enhanced peaks in the valence-band spectra. The latter is a fingerprint of the correlated nature of Fe 3$$d$$ electrons, whereas the former indicates their itinerant nature. It was also found that the Fe 3$$d$$ states have a finite contribution to the density of states at the Fermi energy. These states, presumably consisting of majority-spin $$p$$-$$d$$ hybridized states or minority-spin e states, would be responsible for the ferromagnetic order in this material.

論文

Electronic structure of the high-T$$_{C}$$ ferromagnetic semiconductor (Ga,Fe)Sb; X-ray magnetic circular dichroism and resonance photoemission spectroscopy studies

坂本 祥哉*; Tu, N. T.*; 竹田 幸治; 藤森 伸一; Hai, P. N.*; Anh, L. D.*; 若林 勇希*; 芝田 悟朗*; 堀尾 眞史*; 池田 啓祐*; et al.

Physical Review B, 100(3), p.035204_1 - 035204_8, 2019/07

 被引用回数:4 パーセンタイル:27.63(Materials Science, Multidisciplinary)

The electronic structure and the magnetism of the ferromagnetic semiconductor (Ga,Fe)Sb, whose Curie temperature $$T_{rm C}$$ can exceed room temperature, were investigated by means of X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD), and resonance photoemission spectroscopy (RPES). The line-shape analyses of the XAS and XMCD spectra suggest that the ferromagnetism is of intrinsic origin. The orbital magnetic moments deduced using XMCD sum rules were found to be large, indicating that there is a considerable 3$$d^{6}$$ contribution to the ground state of Fe. From RPES, we observed a strong dispersive Auger peak and nondispersive resonantly enhanced peaks in the valence-band spectra. The latter is a fingerprint of the correlated nature of Fe 3$$d$$ electrons, whereas the former indicates their itinerant nature. It was also found that the Fe 3$$d$$ states have a finite contribution to the density of states at the Fermi energy. These states would be responsible for the ferromagnetic order in this material.

論文

Negative Te spin polarization responsible for ferromagnetic order in the doped topological insulator V$$_{0.04}$$(Sb$$_{1-x}$$Bi$$_{x}$$)$$_{1.96}$$Te$$_{3}$$

Ye, M.*; Xu, T.*; Li, G.*; Qiao, S.*; 竹田 幸治; 斎藤 祐児; Zhu, S.-Y.*; Nurmamat, M.*; 角田 一樹*; 石田 行章*; et al.

Physical Review B, 99(14), p.144413_1 - 144413_7, 2019/04

 被引用回数:3 パーセンタイル:36.84(Materials Science, Multidisciplinary)

We investigate the microscopic origin of ferromagnetism coupled with topological insulators in V-doped (Sb,Bi)$$_{2}$$Te$$_{3}$$ employing X-ray magnetic circular dichroism and angle-resolved two-photon photoemission spectroscopies, combined with first-principles calculations. We found an magnetic moment at the Te site anti-parallel to that of the V and Sb sites, which plays a key role in the ferromagnetic order. We ascribe it to the hybridization between Te 5${it p}$ and V 3${it d}$ majority spin states at the Fermi energy, consistent with the Zener-type ${it p}$-${it d}$ exchange interaction scenario. The substitution of Bi for Sb suppresses the bulk ferromagnetism by introducing extra electron carriers in the majority spin channel of the Te ${it p}$ states that compensates the antiparallel magnetic moment on the Te site. Our findings reveal important clues to designing magnetic topological insulators with higher Curie temperature that work under ambient conditions.

論文

Dirac gap opening and Dirac-fermion-mediated magnetic coupling in antiferromagnetic Gd-doped topological insulators and their manipulation by synchrotron radiation

Shikin, A. M.*; Estyunin, D. A.*; Surnin, Yu. I.*; Koroleva, A. V.*; Shevchenko, E. V.*; Kokh, K. A.*; Tereshchenko, O. E.*; Kumar, S.*; Schwier, E. F.*; 島田 賢也*; et al.

Scientific Reports (Internet), 9(1), p.4813_1 - 4813_17, 2019/03

 被引用回数:4 パーセンタイル:50.59(Multidisciplinary Sciences)

A new kind of magnetically-doped antiferromagnetic (AFM) topological insulators (TIs), Bi$$_{1.09}$$Gd$$_{0.06}$$Sb$$_{0.85}$$Te$$_{3}$$, has been studied by angle-resolved photoemission, superconducting magnetometry (SQUID) and X-ray magnetic circular dichroism (XMCD). It has been shown that this TI is characterized by the Dirac gap at the Fermi level. In the paramagnetic phase, a surface magnetic layer is supposed to develop, where the coupling between the Gd magnetic moments is mediated by the topological surface states (TSSs). This assumption can be confirmed by opening a gap at the Dirac point indicated by the surface-sensitive ARPES, a weak hysteresis loop measured by SQUID, the XMCD showing a surface magnetic moment and the temperature dependence of electrical resistance demonstrating a mid-gap semiconducting behavior, which correlates with the temperature dependence of the surface magnetization and confirms the conclusion that only TSSs are located at the Fermi level.

論文

Manifestation of electron correlation effect in 5$$f$$ states of uranium compounds revealed by 4$$d$$-5$$f$$ resonant photoelectron spectroscopy

藤森 伸一; 小畠 雅明; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 藤森 淳; 山上 浩志; 芳賀 芳範; 山本 悦嗣; 大貫 惇睦*

Physical Review B, 99(3), p.035109_1 - 035109_5, 2019/01

 被引用回数:2 パーセンタイル:50.59(Materials Science, Multidisciplinary)

In the present study, we have elucidated the nature of the electron correlation effect in uranium compounds by imaging the partial $$mathrm{U}~5f$$ density of states (pDOS) of typical itinerant, localized, and heavy fermion uranium compounds by using the $$mathrm{U}$$ 4$$d$$-5$$f$$ resonant photoemission spectroscopy. Obtained $$mathrm{U}~5$$ pDOS exhibit a systematic trend depending on the physical properties of compounds: Although the coherent peak at the Fermi level can be explained by the band-structure calculation, an incoherent peak emerges on the higher binding energy side ($$lesssim 1~mathrm{eV}$$) in the cases of localized and heavy fermion compounds. The intensity and energy position of the incoherent peak is increased and shifted to a higher binding energy as the localization of the $$mathrm{U}~5$$ state increases. These behaviors are consistent with the prediction of the Mott metal-insulator transition, suggesting that the Hubbard-$$U$$ type mechanism takes an essential role in the $$5f$$ electronic structure of actinide materials.

論文

Electronic structure of URu$$_2$$Si$$_2$$ studied by photoelectron spectroscopy (INVITED)

藤森 伸一; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 藤森 淳; 山上 浩志; 芳賀 芳範; 山本 悦嗣; 大貫 惇睦*

Progress in Nuclear Science and Technology (Internet), 5, p.82 - 85, 2018/11

One of the most remarkable properties of actinide compounds is the coexistence of superconductivity and magnetic ordering which has been realized in several strongly-correlated uranium based compounds. In these compounds, both superconductivity and magnetic ordering originate from U 5f states. To understand the origin of the coexistence as well as the mechanism of the superconductivity, it is essential to reveal their U 5f electronic structures. In this presentation, the U 5f electronic structures of heavy Fermion superconductors UPd$$_2$$Al$$_3$$ and URu$$_2$$Si$$_2$$ studied by photoelectron spectroscopy using soft X-rays from SPring-8 BL23SU are presented. For UPd$$_2$$Al$$_3$$, U 4d-5f resonant photoemission experiment was performed, and its partial U 5f spectrum was revealed experimentally. Furthermore, we have applied the three-dimentional ARPES to the hidden order compound URu$$_2$$Si$$_2$$, and revealed its complete 3D electronic structure in the paramagnetic phase. Their electronic structures are discussed based on these results.

論文

Soft X-ray magnetic circular dichroism study on UGe$$_{2}$$

竹田 幸治; 岡根 哲夫; 斎藤 祐児; 山上 浩志; 山本 悦嗣; 芳賀 芳範

Progress in Nuclear Science and Technology (Internet), 5, p.171 - 174, 2018/11

In order to investigate the electronic and magnetic states of UGe$$_{2}$$ element-specifically, we have performed soft X-ray magnetic circular dichroism experiments at the U N$$_{4,5}$$ and Ge L$$_{2,3}$$ absorption edges. We have detected the XMCD signals at both the U and Ge sites and observed clear hysteresis loops in the ferromagnetic (FM) state at T = 5.5 K. From the branching ratio B, it is found that the occupation number of 5f electrons (n$$^{5f}$$) in UGe$$_{2}$$ is close to 3. In addition, applying the magneto-optical sum rules analysis to the XMCD spectrum at the U N$$_{4,5}$$ edges, the ratio of orbital magnetic moment to the spin magnetic moment (-M$$_{L}$$/M$$_{S}$$) is estimated to be 2.17. These values of B and -M$$_{L}$$/M$$_{S}$$ are comparable compared with the results of other FM superconductors: URhGe and UCoGe

論文

Local magnetic states of the weakly ferromagnetic iron-based superconductor Sr$$_{2}$$VFeAsO$$_{3-delta}$$ studied by X-ray magnetic circular dichroism

堀尾 眞史*; 竹田 幸治; 並木 宏允*; 片桐 隆雄*; 若林 勇希*; 坂本 祥哉*; 野中 洋亮*; 芝田 悟朗*; 池田 啓祐*; 斎藤 祐児; et al.

Journal of the Physical Society of Japan, 87(10), p.105001_1 - 105001_2, 2018/10

 被引用回数:1 パーセンタイル:75.88(Physics, Multidisciplinary)

We have performed X-ray magnetic circular dichroism (XMCD) measurements on the iron-based superconductor Sr$$_{2}$$VFeAsO$$_{3-delta}$$ to study the origin of weak ferromagnetism (WFM) reported for this compound. While Fe 3d electrons show a magnetic response similar to the other iron pnictides, signals from V 3d electrons remain finite at zero magnetic field and may be responsible for the WFM.

論文

Cation distribution and magnetic properties in ultrathin (Ni$$_{1-x}$$Co$$_{x}$$)Fe$$_{2}$$O$$_{4}$$ (x=0-1) layers on Si(111) studied by soft X-ray magnetic circular dichroism

若林 勇希*; 野中 洋亮*; 竹田 幸治; 坂本 祥哉*; 池田 啓祐*; Chi, Z.*; 芝田 悟朗*; 田中 新*; 斎藤 祐児; 山上 浩志; et al.

Physical Review Materials (Internet), 2(10), p.104416_1 - 104416_12, 2018/10

 被引用回数:3 パーセンタイル:68.18(Materials Science, Multidisciplinary)

We study the electronic structure and magnetic properties of epitaxial (Ni$$_{1-x}$$Co$$_{x}$$)Fe$$_{2}$$O$$_{4}$$(111) layers with thicknesses $$d$$ = 1.7 - 5.2 nm grown on Al$$_{2}$$O$$_{3}$$(111)/Si(111) structures. We revealed the crystallographic (octahedral $$O_{h}$$ or tetrahedral $$T_{d}$$) sites and the valences of the Fe, Co, and Ni cations using experimental soft X-ray absorption spectroscopy and X-ray magnetic circular dichroism spectra and configuration-interaction cluster-model calculation.

論文

Revising the 4${it f}$ symmetry in CeCu$$_{2}$$Ge$$_{2}$$; Soft X-ray absorption and hard X-ray photoemission spectroscopy

荒谷 秀和*; 中谷 泰博*; 藤原 秀紀*; 川田 萌樹*; 金井 惟奈*; 山神 光平*; 藤岡 修平*; 濱本 諭*; 久我 健太郎*; 木須 孝幸*; et al.

Physical Review B, 98(12), p.121113_1 - 121113_6, 2018/09

AA2018-0352.pdf:1.16MB

 被引用回数:3 パーセンタイル:61.62(Materials Science, Multidisciplinary)

We present a detailed study on the $$4f$$ ground state symmetry of the pressure-induced superconductor CeCu$$_2$$Ge$$_2$$ probed by soft X-ray absorption and hard X-ray photoemission spectroscopy. The revised Ce $$4f$$ ground states are determined as $$|{Gamma_7}rangle=sqrt{0.45}|{J_{z}=pm frac{5}{2}}rangle - sqrt{0.55}|{mp frac{3}{2}}rangle$$ with $$Sigmamathchar`-{rm type}$$ in-plane rotational symmetry. This gives an in-plane magnetic moment consistent with the antiferromagnetic moment as reported in neutron measurements. Since the in-plane symmetry is the same as that for the superconductor CeCu$$_2$$Si$$_2$$, we propose that the charge distribution along the $$c$$-axis plays an essential role in driving the system into a superconducting phase.

論文

Element-specific observation of the ferromagnetic ordering process in UCoAl via soft X-ray magnetic circular dichroism

竹田 幸治; 斎藤 祐児; 岡根 哲夫; 山上 浩志; 松田 達磨*; 山本 悦嗣; 芳賀 芳範; 大貫 惇睦*

Physical Review B, 97(18), p.184414_1 - 184414_7, 2018/05

AA2018-0316.pdf:0.62MB

 被引用回数:0 パーセンタイル:100(Materials Science, Multidisciplinary)

We have performed soft X-ray magnetic circular dichroism (XMCD) experiments on the itinerant-electron metamagnet UCoAl at the U 4$$d$$-5$$f$$ ($$N_mathrm{4, 5}$$) and Co 2$$p$$-3$$d$$ ($$L_mathrm{2, 3}$$) absorption edges in order to investigate the magnetic properties of the U 5$$f$$ and Co 3$$d$$ electrons separately. From the line shape of the XMCD spectrum, it is deduced that the orbital magnetic moment of the Co 3$$d$$ electrons is unusually large. Through the systematic temperature ($$T$$)- and magnetic field ($$H$$)-dependent XMCD measurements, we have obtained two types of the magnetization curve as a function of $$H$$ and $$T$$ (M-H curve and M-T curve, respectively). The metamagnetic transition from a paramagnetic state to a field-induced ferromagnetic state was observed clearly under 15 K at $$H_mathrm{M}$$. The value of the $$H_mathrm{M}$$ and its $$T$$-dependence agree well between the U and Co sites, and the bulk magnetization. Whereas, we have discovered the remarkable differences in the M-H and M-T curves between the U and Co sites. The present findings show clearly that the role of the Co 3$$d$$ electrons should be considered more carefully in order to understand the origin of the magnetic ordering in UCoAl.

論文

Evidence for momentum-dependent heavy fermionic electronic structures; Soft X-ray ARPES for the superconductor CeNi$$_{2}$$Ge$$_{2}$$ in the normal state

中谷 泰博*; 荒谷 秀和*; 藤原 秀紀*; 森 健雄*; 鶴田 篤史*; 橘 祥一*; 山口 貴司*; 木須 孝幸*; 山崎 篤志*; 保井 晃*; et al.

Physical Review B, 97(11), p.115160_1 - 115160_7, 2018/03

AA2018-0003.pdf:1.65MB

 被引用回数:1 パーセンタイル:86.6(Materials Science, Multidisciplinary)

We present clear experimental evidence for the momentum-dependent heavy fermionic electronic structures of the 4${it f}$-based strongly correlated system CeNi$$_{2}$$Ge$$_{2}$$ by soft X-ray angle-resolved photoemission spectroscopy. A comparison between the experimental three-dimensional quasiparticle dispersion of LaNi$$_{2}$$Ge$$_{2}$$ and CeNi$$_{2}$$Ge$$_{2}$$ has revealed that heavy fermionic electronic structures are seen in the region surrounding at a specific momentum. Furthermore, the wave vectors between the observed "heavy spots" are consistent with a result of neutron scattering reflecting magnetic correlations, which could be a trigger of the superconductivity in CeNi$$_{2}$$Ge$$_{2}$$.

論文

Preferred site occupation of 3$$d$$ atoms in Ni$$_{x}$$Fe$$_{4-x}$$N (${it x}$ = 1 and 3) films revealed by X-ray absorption spectroscopy and magnetic circular dichroism

高田 郁弥*; 伊藤 啓太*; 竹田 幸治; 斎藤 祐児; 高梨 弘毅*; 木村 昭夫*; 末益 崇*

Physical Review Materials (Internet), 2(2), p.024407_1 - 024407_5, 2018/02

 被引用回数:7 パーセンタイル:39.93(Materials Science, Multidisciplinary)

X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism measurements were performed at the Ni and Fe $$L_{2,3}$$ absorption edges for Ni$$_{x}$$Fe$$_{4-x}$$N (${it x}$ = 1 and 3) epitaxial films. Shoulders at approximately 2 eV above the Ni $$L_{2,3}$$ main peaks in the XAS spectrum of Ni$$_{3}$$FeN were interpreted to originate from hybridization of orbitals between Ni 3$$d$$ at face-centered (II) sites and N 2$$p$$ at body-centered sites, while such features were missing in NiFe$$_{3}$$N film. Similar shoulders were observed at Fe $$L_{2,3}$$ edges in both films. Hence, Ni atoms preferentially occupied corner (I) sites, where the hybridization was weak because of the relatively long distance between Ni at I sites and N atoms. The relatively large magnetic moment deduced from sum-rule analysis of NiFe$$_{3}$$N also showed a good agreement with the presence of Ni atoms at I sites.

論文

Electronic structure and magnetic properties of the half-metallic ferrimagnet Mn$$_{2}$$VAl probed by soft X-ray spectroscopies

永井 浩大*; 藤原 秀紀*; 荒谷 秀和*; 藤岡 修平*; 右衛門佐 寛*; 中谷 泰博*; 木須 孝幸*; 関山 明*; 黒田 文彬*; 藤井 将*; et al.

Physical Review B, 97(3), p.035143_1 - 035143_8, 2018/01

AA2017-0644.pdf:1.01MB

 被引用回数:4 パーセンタイル:52.2(Materials Science, Multidisciplinary)

フェリ磁性体Mn$$_{2}$$VAl単結晶の電子構造を軟X線吸収磁気円二色性(XMCD)、軟X線共鳴非弾性散乱(RIX)によって調べた。全ての構成元素のXMCD信号を観測した。Mn L$$_{2,3}$$ XMCDの結果は、密度汎関数理論を基にしたスペクトル計算により再現でき、Mn 3$$d$$状態の遍歴的性質が明らかとなった。V L$$_{2,3}$$XMCDの結果はイオンモデル計算によって定性的に説明され、V 3$$d$$電子はかなり局在的である。この描像は、V L$$_{3}$$ RIXSで明らかとなった局所的な$$dd$$遷移と矛盾しない。

論文

Electronic structure of ThRu$$_2$$Si$$_2$$ studied by angle-resolved photoelectron spectroscopy; Elucidating the contribution of U 5$$f$$ states in URu$$_{2}$$Si$$_{2}$$

藤森 伸一; 小畠 雅明; 竹田 幸治; 岡根 哲夫; 斎藤 祐児; 藤森 淳; 山上 浩志; 松本 裕司*; 山本 悦嗣; 立岩 尚之; et al.

Physical Review B, 96(12), p.125117_1 - 125117_9, 2017/09

 被引用回数:5 パーセンタイル:54.87(Materials Science, Multidisciplinary)

The Fermi surface and band structure of $$mathrm{ThRu}_2mathrm{Si}_2$$ have been studied by angle resolved photoelectron spectroscopy (ARPES) with the incident photon energies of $$hnu$$ = 665-735 eV. Detailed band structure and the three-dimensional shape of the Fermi surface were derived experimentally, and they are quantitatively explained by the band-structure calculation based on the density functional approximation. Comparison of the experimental ARPES spectra of $$mathrm{ThRu}_2mathrm{Si}_2$$ with those of $$mathrm{URu}_2mathrm{Si}_2$$ shows that they have considerably different spectral profiles particularly in the energy range of $$E_mathrm{B} = E_mathrm{F}$$ - 1 eV. Some energy bands with their energy dispersions of about 1 eV observed in $$mathrm{URu}_2mathrm{Si}_2$$ are missing in the ARPES spectra of $$mathrm{ThRu}_2mathrm{Si}_2$$ measured along the same high symmetry line of Brillouin zone, suggesting that U 5$$f$$ states form these bands in $$mathrm{URu}_2mathrm{Si}_2$$. The relationship between the ARPES spectra of $$mathrm{URu}_2mathrm{Si}_2$$ and $$mathrm{ThRu}_2mathrm{Si}_2$$ is very different from the case between $$mathrm{CeRu}_2mathrm{Si}_2$$ and $$mathrm{LaRu}_2mathrm{Si}_2$$ where their intrinsic difference is limited only in the very vicinity of the Fermi energy. The present result argues that the U 5$$f$$ electrons in $$mathrm{URu}_2mathrm{Si}_2$$ have strong hybridization with ligand states, and essentially have an itinerant character.

236 件中 1件目~20件目を表示