Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
草間 義紀; 木村 晴行; 根本 正博; 濱松 清隆; 飛田 健次; 及川 聡洋; Afanassiev, V. I.*; 森岡 篤彦; 藤田 隆明; 小出 芳彦; et al.
Plasma Physics and Controlled Fusion, 41(5), p.625 - 643, 1999/00
被引用回数:5 パーセンタイル:19.82(Physics, Fluids & Plasmas)JT-60Uの負磁気シアプラズマにおいて、イオンサイクロトロン周波数帯(ICRF)加熱による高エネルギーイオンテイルの形成と高エネルギーイオンの閉じ込め特性について調べた。負磁気シアプラズマでは高エネルギーイオンの閉じ込めが悪く、テイルも形成されにくいことが中性粒子測定から示唆された。一方、テイルの蓄積エネルギーは、正磁気シアプラズマと同程度であった。モンテカルロコード(OFMC)を用いた評価から、負磁気シアプラズマではテイルイオンの小半径方向の分布が正磁気シアに比べて3倍程度広いことが明らかとなった。その結果、正磁気シアプラズマと同程度の蓄積エネルギーを有すると考えられる。また、高周波加熱に特有なドップラーシフトによる高周波吸収層の外側へのわずかな移動が、蓄積エネルギーに大きな影響を与えることも明らかとなった。
根本 正博; 草間 義紀; Afanassiev, V. I.*; 濱松 清隆; 木村 晴行; 藤井 常幸; 森山 伸一; 三枝 幹雄
Plasma Physics and Controlled Fusion, 39(10), p.1599 - 1614, 1997/10
被引用回数:8 パーセンタイル:30.68(Physics, Fluids & Plasmas)JT-60Uの中性粒子ビームとイオンサイクロトロン(ICRF)波による複合加熱プラズマを用いて、ICRF波の高調波数に対するMeVエネルギーイオンの生成に関する初めての実験研究を行った。実験ではプラズマ形状とICRF波の周波数を一定とし、プラズマ放電毎のトロイダル磁場の変化によりプロトンに対する共鳴高調波数を2から4まで変化させた。80keVのビームイオンが1MeVまで加速されており、0.3-0.8MeVで定義したイオンエネルギースペクトルの傾き(テイル温度)は高調波数の増加と共に上昇した。この結果は解析コードによる計算結果と定性的に一致する。加速されたプロトンの蓄積エネルギーは高調波数よりも、プラズマへ吸収されるICRF波のパワーに強く影響している。その結果、第3および第4高調波での加速されたプロトンの蓄積エネルギーは第2高調波の場合の半分以下に留まっている。
Afanassiev, V. I.*; 草間 義紀; 根本 正博; 近藤 貴; Petrov, S. Y.*; Kozlovskij, S. S.*; 佐藤 稔; 森岡 篤彦; 塚原 美光; 西谷 健夫; et al.
Plasma Physics and Controlled Fusion, 39(10), p.1509 - 1524, 1997/10
被引用回数:21 パーセンタイル:58.35(Physics, Fluids & Plasmas)ロシア・ヨッフェ研究所との協力でJT-60Uに導入したアルファ粒子分析器を用いて、以下のことが明らかとなった。(1)検出器の水素粒子に対するエネルギー分解能及び中性子に対する検出感度は較正結果とほぼ一致した。(2)ヘリウムプラズマにおいては、ICRF加熱で生成される高速プロトンの中性子過程は、0.4MeV以下ではHe、0.6MeV以上ではC
との荷電交換が主である。(3)ICRFとNBIを用いた複合加熱時にビームの入射位置を変えると、He
とC
の平均自由行程の違いから高速プロトンの中性化への寄与が変化し、中性粒子スペクトルに差が生じる。その他、ICRF加熱パワーを変えた場合及びプラズマ密度を変えた場合についても、高速プロトンの中性化におけるHe
とC
の役割について述べる。
草間 義紀; 根本 正博; Afanassiev, V. I.*; Kozlovskij, S. S.*; Petrov, S. Y.*; 佐藤 稔; 森岡 篤彦; 塚原 美光; A.I.Kislyakov*; M.P.Petrov*; et al.
Fusion Engineering and Design, 34-35, p.531 - 534, 1997/03
被引用回数:8 パーセンタイル:55.93(Nuclear Science & Technology)原研とロシア・ヨッフェ研究所との協力により、中性粒子分析器の測定エネルギー範囲の拡大と中性子ノイズの低減に成功した。粒子種を分離するために通常は磁場と同方向に印加する電場の方向を逆転した運転方法の採用とその方向に検出器列を新たに配置したことにより、2MeVに制限されていた陽子に対するエネルギー範囲を4MeVに拡大した。また、中性子ノイズの低減により負イオン源NBIで生成される0.5MeVのイオンを精度良く測定するため、各検出器のエネルギー範囲に適したシンチレータの厚さを選んだ。10mに統一していた厚さを、最も薄いもので2
mとしたことにより、中性子に対する感度を1桁以上低減できた。サイクロトロン等を用いた較正及びJT-60Uにおける中性水素粒子のエネルギー分布測によって、本分析器の性能を確認した。
飛田 健次; 西谷 健夫; 原野 英樹*; 谷 啓二; 磯部 光孝*; 藤田 隆明; 草間 義紀; G.A.Wurden*; 白井 浩; 及川 聡洋; et al.
Fusion Energy 1996, Vol.1, p.497 - 505, 1997/00
核融合反応で生成した1MeVトリトンの燃焼率と中性粒子入射イオンの核融合反応を利用して、高エネルギーイオンの輸送と損失を調べた。通常の磁気シアと比べ、負磁気シアの配位では、トリトン燃焼率が低く(粒子損失がないと仮定した計算の10-60%)、高エネルギーイオンの閉じ込め特性が劣ることを実験で示した。軌道追跡モンテカルロコードを使った解析により、粒子損失の原因はリップル統計拡散と衝突リップル拡散であることを明らかにした。これらの結果は、負磁気シアの炉心プラズマを構想する際に、粒子を含めた高エネルギーイオンの損失に留意しなければならないことを示している。また、ITER相当の上下非対称リップルを持つプラズマにおいて高エネルギーイオンの損失を調べた。実験の結果、この上下非対称性は粒子損失に影響を与えないことがわかった。
木村 晴行; 森山 伸一; 三枝 幹雄; 草間 義紀; 小関 隆久; Kramer, G. J.*; 藤田 隆明; 及川 聡洋; 藤井 常幸; 根本 正博; et al.
Fusion Energy 1996, Vol.3, p.295 - 305, 1997/00
第2高調波少数イオンICRF加熱が負磁気シア配位プラズマに初めて適用され、輸送障壁の内部でプラズマを効率的に加熱できた。ICRF加熱による高エネルギーイオンの蓄積エネルギーは正磁気シア配位におけるものに匹敵する。TAEモードは負磁気シア配位において強い輸送障壁がある場合には安定であった。これはアルヴェン連続スペクトルのギャップが不整列となることで説明される。輸送障壁が弱まると比較的高いトロイダルモード数(5-8)のTAEモードが観測された。TAEモードの制御のためにトロイダル方向のプラズマ回転速度のシアの制御が有効であることが確認された。
三枝 幹雄; 草間 義紀; 小関 隆久; 木村 晴行; 藤田 隆明; 森山 伸一; 藤井 常幸; 安積 正史; Afanassiev, V. I.*; 閨谷 譲; et al.
Nuclear Fusion, 37(11), p.1559 - 1568, 1997/00
被引用回数:16 パーセンタイル:49.88(Physics, Fluids & Plasmas)核融合炉において、高速の粒子によって励起され、特に高速イオンの閉じ込めを劣化させることが予想されているトロイダルアルフベン固有(TAE)モードを、プラズマのトロイダル回転シアを用いて安定化できることを、JT-60Uにて実験的に確認した。また、詳細なデータ解析により、安定化のメカニズムは、トロイダル回転シアによるTAEモードの構造の変化に伴う減衰項、励起項の変化であることを確認した。
木村 晴行; 内藤 磨; 三枝 幹雄; 井手 俊介; 根本 正博; 池田 佳隆; 森山 伸一; 近藤 貴; 藤井 常幸; 関 正美; et al.
AIP Conference Proceedings 355, p.81 - 88, 1996/00
少数イオンICRF加熱により高プラズマ電流領域のTAEモードが調べられ、4MA放電では13程度の高いトロイダルモード数を有するTAEモードが現れることが明らかにされる。イオンサイクロトロン高調波共鳴(第2~第4調波)によるビーム加速時のMeV領域のエネルギースペクトルが測定され、テイル温度は調波数がふえるに従って高くなることが示される。低域混成(LH)波の吸収分布は入射波動スペクトル、入射位置、安全係数、を変えることにより制御できる。誘導電流と逆方向にLH波による電流駆動を行い、電流分布の制御性が向上することが実証される。両方の波動に対してセパラトリックスとアンテナ間の大きなギャップに対するアンテナ結合が実証される。
佐藤 稔; 根本 正博; 佐々木 弘*; 塚原 美光; S.Y.Petrov*; Afanassiev, V. I.*; Kozlovskij, S. S.*; 草間 義紀
JAERI-Tech 95-026, 77 Pages, 1995/03
JT-60Uプラズマ中の高エネルギーイオンの挙動を解明するため、アルファ粒子分析装置が取り付けられた。この装置の主要機器であるアルファ粒子分析器は、ロシア・ヨッフェ物理工学研究所より導入されたものである。装置の運転状態をモニターしながら、JT-60Uの放電シーケンスに従って装置を制御したり、計測データを収集するという複雑な機能を持つソフウェアを開発した。このソフトウェアはCAMACシステムに組み込まれたマイクロコンピューターで使用される。放電シーケンスと切り離したオフラインモード及び放電シーケンスに従ったオンラインモードで、本ソフトウェアの様々な機能を確認した。分析装置はこのソフトウェアを用いて順調に運転され、貴重なデータを提供している。
草間 義紀; 根本 正博; 佐藤 稔; 塚原 美光; 飛田 健次; 竹内 浩; S.Petrov*; Afanassiev, V. I.*; Kozlovskij, S. S.*; A.Kislyakov*; et al.
Review of Scientific Instruments, 66(1), p.339 - 341, 1995/01
被引用回数:17 パーセンタイル:77.06(Instruments & Instrumentation)JT-60Uにおいてアルファ粒子等のMeV領域のイオンの閉じ込めに関する研究を行うため、これらの粒子を測定する荷電交換中性粒子分析器をロシア・ヨッフェ研究所と協力して開発し、JT-60Uに設置した。当論文では、この分析器の特性と性能、較正実験結果、JT-60Uにおける配置と初期運転の結果について述べる。分析器のエネルギー範囲はアルファ粒子に対して0.5~4MeV、検出器数は8である。検出器はCsI(Tl)シンチレータと光電子増倍管を組み合わせたものである。この分析器の大きな特徴は、中性子及び線のノイズを除去するため、データ収集系に波高分析を取り入れた点である。波高分析システムを有効に用いるため、サイクロトロン、アルファ粒子線源を用いて粒子のパルス波高のエネルギー依存性等を詳細に調べ、この波高分析システムの有用性をJT-60Uの重水素実験で確認した。
Afanassiev, V. I.*; 草間 義紀; 根本 正博; 西谷 健夫; S.Petrov*; Kozlovskij, S. S.*; 佐藤 稔; 森岡 篤彦; 塚原 美光; 近藤 貴; et al.
Europhysics Conference Abstracts, 19C(2), p.57 - 60, 1995/00
ヨッフェ研究所との協力で準備したアルファ粒子分析器により、ICRF加熱時に発生するMeV領域の高速水素粒子を測定した。(1)検出器の特性:中性子/線に対する検出感度及び水素粒子に対するエネルギー分解能は較正結果とほぼ一致した。(2)イオンテイル温度:2倍~5倍までの高調波加熱で形成されるテイル温度は、4倍までは次数とともに上昇し、5倍で減少した。この傾向は、フォッカー・プランクコードによる計算結果と一致した。(3)ICRFパワー依存性:5MW程度で、測定した粒子束(0.3~1MeV)、テイルの蓄積エネルギーは飽和した。よりエネルギーの高いイオンによるパワー収束と加速されたイオンの損失が示唆される。テイル温度の電子密度依存性、テイル温度の減衰についても述べる。
草間 義紀; Afanassiev, V. I.*; S.Y.Petrov*; 根本 正博; 木村 晴行; 森岡 篤彦; 佐藤 稔; 塚原 美光; 三枝 幹雄; 近藤 貴; et al.
JAERI-Research 94-036, 9 Pages, 1994/10
JT-60Uにおいてアルファ粒子等のMeV領域のイオンの閉じ込めに関する研究を行うため、ロシア・ヨッフェ研究所と協力して荷電交換中性粒子分析器を開発し、JT-60Uに設置した。当報告書は、この分析器を用いて得られた最初の測定結果について述べる。重水素ビームとイオンサイクロトロン周波数(ICRF)波を用いた加熱実験で、ICRF波で加速されてできるMeV領域の水素原子(H°)の測定を行った。検出器には、H°の他に中性子及びガンマ線がノイズとして受かった。これらのノイズと粒子信号を分離することを目的にデータ収集系に導入した波高分析(PHA)システムによって、中性子及びガンマ線によるノイズとH°の信号を分離することに成功した。H°のピークの部分のカウント数を足し合わせることによって、H°粒子束の時間変化を容易に得ることができた。