Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 78

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of power distribution calculation of the very high temperature reactor critical assembly (VHTRC) with Monte Carlo MVP3 code

Simanullang, I. L.*; Nakagawa, Naoki*; Ho, H. Q.; Nagasumi, Satoru; Ishitsuka, Etsuo; Iigaki, Kazuhiko; Fujimoto, Nozomu*

Annals of Nuclear Energy, 177, p.109314_1 - 109314_8, 2022/11

Journal Articles

Calculation of shutdown gamma distribution in the high temperature engineering test reactor

Ho, H. Q.; Ishii, Toshiaki; Nagasumi, Satoru; Ono, Masato; Shimazaki, Yosuke; Ishitsuka, Etsuo; Goto, Minoru; Simanullang, I. L.*; Fujimoto, Nozomu*; Iigaki, Kazuhiko

Nuclear Engineering and Design, 396, p.111913_1 - 111913_9, 2022/09

JAEA Reports

Document collection of the Special Committee on HTTR Heat Application Test

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Review 2022-016, 193 Pages, 2022/08


Aiming to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR), Japan Atomic Energy Agency (JAEA) is planning a HTTR heat application test producing hydrogen with High Temperature Engineering Test Reactor (HTTR) achieved 950$$^{circ}$$C of the highest reactor outlet coolant temperature in the world. In the HTTR heat application test, it is required to establish its safety design realizing highly safe connection of a HTGR and a hydrogen production plant by the Nuclear Regulation Authority to obtain the permission of changes to reactor installation. However, installation of a system connecting the hydrogen production plant and a nuclear reactor, and its safety design has not been conducted so far in conventional nuclear power plant including HTTR in the world. A special committee on the HTTR heat application test, established under the HTGR Research and Development Center, considered a safety design philosophy for the HTTR heat application test based on an authorized safety design of HTTR in terms of conformity to the New Regulatory Requirements taking into account new considerable events as a result of the plant modification and connection of the hydrogen production plant. This report provides materials of the special committee such as technical reports, comments provided from committee members, response from JAEA for the comments and minutes of the committee.

JAEA Reports

Safety design philosophy of HTTR Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Iigaki, Kazuhiko; Okita, Shoichiro; Hasegawa, Takeshi; Mizuta, Naoki; Sato, Hiroyuki; Sakaba, Nariaki

JAEA-Technology 2022-011, 60 Pages, 2022/07


Japan Atomic Energy Agency is planning a High Temperature Engineering Test Reactor (HTTR) heat application test producing hydrogen with the HTTR which achieved the highest reactor outlet coolant temperature of 950$$^{circ}$$C in the world to realize a massive, cost-effective and carbon-free hydrogen production technology utilizing a high temperature gas cooled reactor (HTGR). In the HTTR heat application test, it is required to establish its safety design for coupling a hydrogen production plant to HTGR through the licensing by the Nuclear Regulation Authority (NRA). A draft of a safety design philosophy for the HTTR heat application test facility was considered taking into account postulated events due to the plant modification and coupling of the hydrogen production plant based on the HTTR safety design which was authorized through the safety review of the NRA against New Regulatory Requirements. The safety design philosophy was examined to apply proven conventional chemical plant standards to the hydrogen production plant for ensuring public safety against disasters caused by high pressure gases. This report presents a result of a consideration on safety design philosophies regarding the reasonability and condition to apply the High Pressure Gas Safety Act for the hydrogen production plant, safety classifications, seismic design classification, identification of important safety system.

Journal Articles

A Study on the improvement of accuracy of three-dimensional seismic evaluation analysis method for nuclear buildings using a large-scale observation system

Nishida, Akemi; Kawata, Manabu; Choi, B.; Iigaki, Kazuhiko; Li, Y.

Transactions of 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 10 Pages, 2022/07

We have conducted research and development with the aim of improving the accuracy of three-dimensional seismic evaluation analysis method for nuclear buildings that contributes to probabilistic risk assessment caused by earthquakes (seismic PRA). In 2019, we started our research on improving the accuracy and validating the three-dimensional seismic analysis method used for nuclear buildings using actual seismic observation records in collaboration with the Nuclear Regulation Authority. In this research, we constructed a large-scale observation system that enabled simultaneous observation at multiple positions during natural earthquakes or artificial waves by installing accelerometers not only on/in the soil and on the floors of the building but also on the walls of the building, targeting the High Temperature engineering Test Reactor, which is one of nuclear facilities of JAEA. In this paper, we report the outline of the large-scale observation system and the knowledge obtained from the analysis results of the seismic observation records acquired using this system.

Journal Articles

Improving the safety of the high temperature gas-cooled reactor "HTTR" based on Japan's new regulatory requirements

Hamamoto, Shimpei; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Sekita, Kenji; Watanabe, Shuji; Furusawa, Takayuki; Iigaki, Kazuhiko; et al.

Nuclear Engineering and Design, 388, p.111642_1 - 111642_11, 2022/03

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

Following the Fukushima Daiichi Nuclear Power Plant accident in 2011, the Japan Atomic Energy Agency adapted High-Temperature engineering Test Reactor (HTTR) to meet the new regulatory requirements that began in December 2013. The safety and seismic classifications of the existing structures, systems, and components were discussed to reflect insights regarding High Temperature Gas-cooled Reactors (HTGRs) that were acquired through various HTTR safety tests. Structures, systems, and components that are subject to protection have been defined, and countermeasures to manage internal and external hazards that affect safety functions have been strengthened. Additionally, measures are in place to control accidents that may cause large amounts of radioactive material to be released, as a beyond design based accident. The Nuclear Regulatory Commission rigorously and appropriately reviewed this approach for compliance with the new regulatory requirements. After nine amendments, the application to modify the HTTR's installation license that was submitted in November 2014 was approved in June 2020. This response shows that facilities can reasonably be designed to meet the enhanced regulatory requirements, if they reflect the characteristics of HTGRs. We believe that we have established a reference for future development of HTGR.

Journal Articles

Design of a portable backup shutdown system for the high temperature gas cooled reactor

Hamamoto, Shimpei; Ho, H. Q.; Iigaki, Kazuhiko; Goto, Minoru; Shimazaki, Yosuke; Sawahata, Hiroaki; Ishitsuka, Etsuo

Nuclear Engineering and Design, 386, p.111564_1 - 111564_8, 2022/01

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

The experience of Fukushima Daiichi Nuclear Power Plant accident caused by the great earthquake that occurred in eastern Japan in 2011 showed the importance of preparing for the loss of function of the engineered safety features. Increasing the strength of equipment to prevent loss of function in an accident is effective, but the possibility of loss of function remains. Therefore, it is important to have an alternative to lost functions in order to put the accident under control early. Thus, this study designed an alternative shutdown system, namely a portable backup shutdown system (PBSS), to make countermeasures in the event of a loss of shutdown function more robust without impairing economic efficiency of the High Temperature Gas-cooled Reactor (HTGR). The PBSS is portable and capable of being installed manually so that it can operate in a total loss of off-site electricity. Various neutron absorber materials for the PBSS were also considered from the viewpoints of technical and cost-effective properties. As results of optimization, the boron nitride (BN) was selected as it shows a good neutronic property as well as a reasonable cost in comparison with other materials.

Journal Articles

Seismic classification of high temperature engineering test reactor

Ono, Masato; Shimizu, Atsushi; Ohashi, Hirofumi; Hamamoto, Shimpei; Inoi, Hiroyuki; Tokuhara, Kazumi*; Nomoto, Yasunobu*; Shimazaki, Yosuke; Iigaki, Kazuhiko; Shinozaki, Masayuki

Nuclear Engineering and Design, 386, p.111585_1 - 111585_9, 2022/01

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

In the late 1980s during the design stage, the seismic classification of the high temperature engineering test reactor (HTTR) was formulated. Owing to the lack of operation experiences of the HTTR to sufficiently understand the safety characteristics of high temperature gas cooled reactors (HTGR) at that time, the seismic classification of commercial light water reactors (LWR) was applied to HTTR. However, the subsequent operation experiences and test results using HTTR made it clear that the seismic classification of commercial LWR was somewhat too conservative for the HTGR. As a result, Class S facilities were downgraded compared to the commercial LWR. Moreover, the validity of the new seismic classification is confirmed. In June 2020, the Nuclear Regulatory Authority approved that the result of the seismic classification conformed to the standard rules of the reactor installation change.

Journal Articles

Proposal of evaluation method of graphite incombustibility

Hamamoto, Shimpei; Ohashi, Hirofumi; Iigaki, Kazuhiko; Shimazaki, Yosuke; Ono, Masato; Shimizu, Atsushi; Ishitsuka, Etsuo

Proceedings of 2021 International Congress on Advances in Nuclear Power Plants (ICAPP 2021) (USB Flash Drive), 6 Pages, 2021/10

Since the HTGR has a large amount of graphite material in the core, it is necessary to assume an accident in which the reactor pressure boundary is damaged and air flows into the core. It is important to state that at the time of this accident, graphite does not burn and the accident does not develop due to the heat of oxidation reaction. Therefore, in this study, in order to evaluate the combustibility of graphite materials, we propose a method to compare the calorific value and heat removal amount of the material. When calculating the calorific value, the structural material of HTTR, a high-temperature gas reactor in Japan, was used as a reference. The amount of air in contact with the structural material is a value determined from the chimney effect. The amount of heat release is the sum of convection and radiation. As a result of comparing the heat generation amount with the heat removal amount, it was shown that the heat release amount was always larger than the heat generation amount. This result shows that the graphite material does not depend on the state at the time of the air inflow accident, the temperature decreases and does not burn. It is important to clearly explain the non-flammability of graphite materials when deciding how to deal with severe accidents in HTGRs. This quantitative evaluation method based on a simple theory is considered useful.

Journal Articles

Estimation of vibration characteristics of nuclear facilities based on seismic observation records

Yamakawa, Koki*; Saruta, Masaaki*; Moritani, Hiroshi*; Yamazaki, Hiroaki*; Nishida, Akemi; Kawata, Manabu; Iigaki, Kazuhiko

Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 6 Pages, 2021/08

Several large-scale earthquakes have occurred, such as the Niigataken Chuetsu-oki Earthquake in 2007 and the 2011 off-the-Pacific coast of Tohoku Earthquake. Therefore, a three-dimensional (3D) finite element model to evaluate the local response of the reactor building is currently being developed for seismic response analysis. In order to refine the 3D finite element model, it is important to verify the correspondence to the seismic observation behaviors. In this study, the authors analyze the basic response characteristics, such as the natural frequencies and modes of the reactor building, and evaluate the effects of the amplitude of the seismic excitation on the response characteristics based on seismic observation records. This is done to clarify the behavior of a reactor building during earthquakes. These analyses will assist in quantitatively evaluating the correlation between the natural frequency of the building and the amplitude of the seismic excitation. Furthermore, the ratios of rotational displacement and displacement caused by building deformation for natural modes are discussed.

JAEA Reports

Interim activity status report of "the group for investigation of reasonable safety assurance based on graded approach" (from September, 2019 to September, 2020)

Yonomoto, Taisuke; Nakashima, Hiroshi*; Sono, Hiroki; Kishimoto, Katsumi; Izawa, Kazuhiko; Kinase, Masami; Osa, Akihiko; Ogawa, Kazuhiko; Horiguchi, Hironori; Inoi, Hiroyuki; et al.

JAEA-Review 2020-056, 51 Pages, 2021/03


A group named as "The group for investigation of reasonable safety assurance based on graded approach", which consists of about 10 staffs from Sector of Nuclear Science Research, Safety and Nuclear Security Administration Department, departments for management of nuclear facility, Sector of Nuclear Safety Research and Emergency Preparedness, aims to realize effective graded approach (GA) about management of facilities and regulatory compliance of JAEA. The group started its activities in September, 2019 and has had discussions through 10 meetings and email communications. In the meetings, basic ideas of GA, status of compliance with new regulatory standards at each facility, new inspection system, etc were discussed, while individual investigation at each facility were shared among the members. This report is compiled with expectation that it will help promote rational and effective safety management based on GA by sharing contents of the activity widely inside and outside JAEA.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

JAEA Reports

Assessment of the probability of aircraft crashing for HTTR

Ono, Masato; Hanawa, Yoshio; Sonobe, Hiroshi; Nishimura, Arashi; Sugaya, Naoto; Iigaki, Kazuhiko

JAEA-Technology 2020-010, 14 Pages, 2020/09


In response to new standard for regulating research and test reactor which is enforced December 18, 2013, it was carried out assessment of the probability of aircraft crashing for HTTR. According to assessment method provided in the Assessment Criteria of the Probability of Aircraft Crashing on Commercial Power Reactor Facilities, assessment was conducted targeting reactor building, spent fuel storage building and cooling tower. As a result, it was confirmed that the probability was 5.98$$times$$10$$^{-8}$$, which is lower than the assessment criteria 10$$^{-7}$$.

Journal Articles

Evaluation of impact with high temperature engineering test reactor using realistic model of stack and reactor building

Ono, Masato; Fujiwara, Yusuke; Matsumoto, Tetsuro*; Iigaki, Kazuhiko

Nihon Genshiryoku Gakkai Wabun Rombunshi, 19(2), p.110 - 120, 2020/06

Integrity confirmation for buildings against collisions of projectiles has been conducted to evaluate collisions between a projectile with simple shape and a wall using empirical formulas. It is a matter of fact, there is a possibility that structures with complex shape such as stack may collide with a reactor building. However, there were not so many studies of collisions between structures with complex shape and buildings in the literature. Impact evaluation was carried out using reactor building and stack with real shape and adequate physical property. It was found that ceiling of reactor building was not damaged by the collision, confirming that there was no effect inside of reactor building.

Journal Articles

Maintenance management of HTTR (Characteristics and achievements of maintenance management)

Shimazaki, Yosuke; Yamazaki, Kazunori; Iigaki, Kazuhiko

Hozengaku, 18(1), p.16 - 20, 2019/04

no abstracts in English

JAEA Reports

Error estimation in observed acceleration data toward V&V of a seismic simulation

Suzuki, Yoshio; Iigaki, Kazuhiko

JAEA-Data/Code 2018-009, 41 Pages, 2018/09


Toward Verification & Validation (V&V) of a seismic simulation of entire nuclear plant, an approach to estimate errors included in observed acceleration data is proposed. On the comparison between simulation results and experimental/observational results in the process of V&V, errors which might be included in experimental/observational data should be estimated. It is considered that there exist following two causes for errors in observed acceleration data; measurement accuracy of an accelerometer measurement system and disturbance included in measured data. Techniques based on the specification of an accelerometer measurement system and the time series analysis are respectively adopted to estimate those errors. To clarify the actual procedure, those techniques are applied to acceleration data observed at High Temperature engineering Test Reactor (HTTR) at the Oarai Research and Development Institute of Japan Atomic Energy Agency.

JAEA Reports

Excellent feature of Japanese HTGR technologies

Nishihara, Tetsuo; Yan, X.; Tachibana, Yukio; Shibata, Taiju; Ohashi, Hirofumi; Kubo, Shinji; Inaba, Yoshitomo; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; et al.

JAEA-Technology 2018-004, 182 Pages, 2018/07


Research and development on High Temperature Gas-cooled Reactor (HTGR) in Japan started since late 1960s. Japan Atomic Energy Agency (JAEA) in cooperation with Japanese industries has researched and developed system design, fuel, graphite, metallic material, reactor engineering, high temperature components, high temperature irradiation and post irradiation test of fuel and graphite, high temperature heat application and so on. Construction of the first Japanese HTGR, High Temperature engineering Test Reactor (HTTR), started in 1990. HTTR achieved first criticality in 1998. After that, various test operations have been carried out to establish the Japanese HTGR technologies and to verify the inherent safety features of HTGR. This report presents several system design of HTGR, the world-highest-level Japanese HTGR technologies, JAEA's knowledge obtained from construction, operation and management of HTTR and heat application technologies for HTGR.

Journal Articles

Comprehensive seismic evaluation of HTTR against the 2011 off the Pacific coast of Tohoku Earthquake

Ono, Masato; Iigaki, Kazuhiko; Sawahata, Hiroaki; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Kondo, Toshinari; Kojima, Keidai; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 4(2), p.020906_1 - 020906_8, 2018/04

On March 11th, 2011, the 2011 off the Pacific coast of Tohoku Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the High Temperature Engineering Test Reactor (HTTR) had been stopped under the periodic inspection and maintenance of equipment and instruments. A comprehensive integrity evaluation was carried out for the HTTR facility because the maximum seismic acceleration observed at the HTTR exceeded the maximum value of design basis earthquake. The concept of comprehensive integrity evaluation is divided into two parts. One is the "visual inspection of equipment and instruments". The other is the "seismic response analysis" for the building structure, equipment and instruments using the observed earthquake. All equipment and instruments related to operation were inspected in the basic inspection. The integrity of the facilities was confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the results of inspection of equipment and instruments associated with the seismic response analysis, it was judged that there was no problem for operation of the reactor, because there was no damage and performance deterioration. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015. Additionally, the integrity of control rod guide blocks was also confirmed visually when three control rod guide blocks and six replaceable reflector blocks were taken out from reactor core in order to change neutron startup sources in 2015.

Journal Articles

3D crash calculation of stack and reactor building of HTTR

Ono, Masato; Fujiwara, Yusuke; Iigaki, Kazuhiko; Matsumoto, Tetsuro*; Taki, Nobuhiro*

Proceedings of European Research Reactor Conference 2018 (RRFM 2018) (Internet), 7 Pages, 2018/03

Integrity confirmation of building against the crash of flying object due to the tornado was carried out by formulas which calculate by simple shape. However, there was no study on crash calculation using complex shape such as the stack and reactor building. In this study, the crash calculation was carried out by a real shape model of High Temperature Engineering Test Reactor (HTTR) stack and reactor building using three-dimensional analysis code (VPS: Virtual Performance Solution). In the calculation, parameters of VPS were conservatively set in accordance with the formulas, which are formulated based on results of crash experiments and approved by the Nuclear Regulatory Authority. The crash calculation of stack and reactor building of HTTR was carried out using VPS. As a result, the integrity of building against the crash by stack was confirmed.

Journal Articles

Measurement of temperature response of intermediate heat exchanger in heat application system abnormal simulating test using HTTR

Ono, Masato; Fujiwara, Yusuke; Honda, Yuki; Sato, Hiroyuki; Shimazaki, Yosuke; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Iigaki, Kazuhiko; Takada, Shoji

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 5 Pages, 2017/04

Japan Atomic Energy Agency (JAEA) has carried out research and developments towards nuclear heat utilization of High Temperature Gas-cooled Reactor (HTGR) using High Temperature Engineering Test Reactor (HTTR). The nuclear heat utilization systems connected to HTGR will be designed on the basis of non-nuclear-grade standards in terms of easier entry for the chemical plant companies and the construction economics of the systems. Therefore, it is necessary that the reactor operations continue even if abnormal events occur in the systems. Heat application system abnormal simulating test with HTTR was carried out in non-nuclear heating operation to focus on the thermal effect in order to obtain data of the transient temperature behavior of the metallic components in the Intermediate Heat Exchanger (IHX). The IHX is the key components to connect the HTTR with the heat application system. In the test, the coolant helium gas temperature was heated up to 120$$^{circ}$$C by the compression heat of the gas circulators in the HTTR under the ideal condition to focus on the heat transfer. The tests were conducted by decreasing the helium gas temperature stepwise by increasing the mass flow rate to the air cooler. The temperature responses of the IHX were investigated. For the components such as the heat transfer tubes and heat transfer enhancement plates of IHX, the temperature response was slower in the lower position in comparison with the higher position. The reason is considered that thermal load fluctuation is imposed in the secondary helium gas which flows from the top to the bottom in the heat transfer tubes of the IHX. The test data are useful to verify the numerical model of the safety evaluation code.

78 (Records 1-20 displayed on this page)