Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Myagmarjav, O.; 田中 伸幸; 野口 弘喜; 上地 優; 小野 正人; 野村 幹弘*; 竹上 弘彰
Progress in Nuclear Science and Technology (Internet), 7, p.235 - 242, 2025/05
Hydrogen plays an important role in the transition to clean energy and the achievement of net-zero emissions. Thermochemical iodine-sulfur (IS) process, which uses nuclear heat to decompose water, is considered the most prospective method for producing large amounts of hydrogen without emitting carbon dioxide. The IS process consists of three coupled chemical reactions (Bunsen reaction, sulfuric acid decomposition, and hydrogen iodide decomposition). A major challenge for the practical application of the IS process is the efficient separation of hydrogen from the mixed corrosive gas of hydrogen iodide and iodine generated during hydrogen iodide decomposition (2HI H
+ I
). A membrane that can efficiently separate H
while treating this corrosive HI gas has not yet been developed. In this study, a membrane with high separation performance and corrosion stability was developed by fabricating a three-layer structure consisting of a base
-alumina support tube, a middle silica layer and a top H
-selective silica layer. By selecting the dipping time and CVD time, which are critical to the properties of the resulting silica layers, the prepared membrane showed high separation performance. For instance, the H
/SF
selectivity varied between 1622 and 1671 in the temperature range of 30-200
C. The result suggests that the developed membranes had no defects, especially existence of pinholes. HI stability tests also showed that these membrane were stable in corrosive environments.
杉本 千紘; Myagmarjav, O.; 田中 伸幸; 野口 弘喜; 竹上 弘彰; 久保 真治
International Journal of Hydrogen Energy, 95, p.98 - 107, 2024/12
被引用回数:0 パーセンタイル:0.00(Chemistry, Physical)The thermochemical iodine-sulfur (IS or SI) process can produce hydrogen by decomposing water through chemical reactions and nuclear heat. The hydrogen iodine (HI) decomposition reaction of the IS process thermally decomposes HI at ca. 500C to produce hydrogen. The thermal efficiency of hydrogen production in the thermochemical IS process can be effectively enhanced using a membrane reactor for the HI decomposition reaction; hydrogen separation membrane tubes made of ceramic are attached to a tube plate via sealing parts. The applicability of a sealing method using the expanded graphite grand packing was investigated. During 50 thermal cycles ranging between 25
C-450
C and gas pressure of 0.2-0.8 MPa (gauge), the leakage flow rate was approximately 2
10
Pa m
s
. This value is comparable to a detection limit of the standard bubble leak test, indicating that this sealing method works effectively.
田中 伸幸; 竹上 弘彰; 野口 弘喜; 上地 優; Myagmarjav, O.; 小野 正人; 杉本 千紘
Chemical Engineering Science, 299, p.120479_1 - 120479_11, 2024/11
被引用回数:0 パーセンタイル:0.00(Engineering, Chemical)熱化学水素製造法ISプロセスでは、溶液組成を制御して安定な運転を行うため、溶液組成を把握することが求められる。本研究では、深層ニューラルネットワークモデルによる機械学習を用いて、計測可能な物性値から組成をオンラインで予測する手法を開発した。本手法は、従来のサンプリングによる滴定分析と比べて、迅速に溶液組成に関する情報を取得することが出来る。ISプロセスで主要な溶液組成であるHI-I-H
O系において、温度、圧力、溶液密度の測定値から組成を予測できるモデルを作成し、トレンドデータから組成を推定可能であることを示した。また、得られたモデルを解析することで、組成制御に効果的な運転パラメータを明らかにした。
Myagmarjav, O.; 柴田 愛*; 田中 伸幸; 野口 弘喜; 久保 真治; 野村 幹弘*; 竹上 弘彰
International Journal of Hydrogen Energy, 46(56), p.28435 - 28449, 2021/08
被引用回数:4 パーセンタイル:14.15(Chemistry, Physical)In this study, a corrosion-stable silica ceramic membrane was developed to be used in H purification during the hydrogen iodide decomposition (2HI
H
+ I
), which is a new application of the silica membranes. From a practical perspective, the membrane separation length was enlarged up to 400 mm and one end of the membrane tubes was closed to avoid any thermal variation along the membrane length and sealing issues. The silica membranes consisted of a three-layer structure comprising a porous
-Al
O
ceramic support, an intermediate layer, and a top silica layer. The intermediate layer was composed of
-Al
O
or silica, and the top silica layer that is H
selective was prepared via counter-diffusion chemical vapor deposition of a hexyltrimethoxysilane. A membrane using a silica intermediate layer exhibited a higher H
/SF
selectivity but lower H
permeance with compared with the membrane using a
-Al
O
intermediate layer. The membrane using the silica intermediate layer was more stable in corrosive HI gas than a membrane with a
-Al
O
intermediate layer after 300 h of stability tests. To the best of our knowledge, this is the first report of 400-mm-long closed-end silica membranes supported on Si-formed
-Al
O
tubes produced via chemical vapor deposition method. In conclusion, the developed silica membranes seem suitable for membrane reactors that produce H
on large scale using HI decomposition in the thermochemical iodine-sulfur process.
田中 伸幸; 竹上 弘彰; 野口 弘喜; 上地 優; Myagmarjav, O.; 久保 真治
International Journal of Hydrogen Energy, 46(55), p.27891 - 27904, 2021/08
被引用回数:5 パーセンタイル:18.61(Chemistry, Physical)熱化学水素製造法ISプロセスでは、配管閉塞などを回避し、水素製造を安定的に運転するため、各反応器における組成変動を抑制することが求められる。従来の運転方法は、全ての反応器を同時に接続するため、安定的に連動させて運転を行うことが困難であった。本報では、それを解決するため、反応工程別に閉ループを形成することで、各工程を個別に安定化させるループ運転を行った後、連続運転に移行する新たな運転方法を提示した。新たなループ構成に対して、フローシート解析を行い、物質収支が矛盾なく閉ループを構成していることを示し、加えて、ループ運転から連続運転に滞りなく移行でき、水素製造を達成できることを明らかにした。
Myagmarjav, O.; 田中 伸幸; 野村 幹弘*; 野口 弘喜; 今井 良行; 上地 優; 久保 真治; 竹上 弘彰
Progress in Nuclear Energy, 137, p.103772_1 - 103772_7, 2021/07
被引用回数:8 パーセンタイル:68.12(Nuclear Science & Technology)Hydrogen production from nuclear energy has attracted considerable interest as a clean energy solution to address the challenges of climate change and environmental sustainability. With respect to the large-scale and economical production of hydrogen using nuclear energy, the thermochemical water-splitting iodine-sulfur (IS) process is a promising method. The IS process uses sulfur and iodine compounds to decompose water into its elemental constituents, hydrogen and oxygen, by using three coupled chemical reactions: the Bunsen reaction; sulfuric acid decomposition; and hydrogen iodide (HI) decomposition. The decomposition of HI is the efficiency-determining step of the process. In this work, a membrane reactor with a silica membrane closed on one end was designed, and its potential for hydrogen production from HI decomposition was explored. In the reactor-module design, only one end of the membrane tube was fixed, while the closed-end of the tube was freely suspended to avoid thermal expansion effects. The closed-end silica membranes were prepared for the first time by a counter-diffusion chemical vapor deposition of hexyltrimethoxysilane. In application, HI conversion of greater than 0.60 was achieved at a decomposition temperature of 400C. Thus, the membrane reactor with closed-end silica membrane was shown to produce a successful equilibrium shift in the production of hydrogen via HI decomposition in the thermochemical IS process.
野口 弘喜; 上地 優; 田中 伸幸; 竹上 弘彰; 岩月 仁; 笠原 清司; Myagmarjav, O.; 今井 良行; 久保 真治
International Journal of Hydrogen Energy, 46(43), p.22328 - 22343, 2021/06
被引用回数:19 パーセンタイル:62.60(Chemistry, Physical)熱化学水素製造法ISプロセスは、高温ガス炉,太陽熱,産業廃熱などの様々な熱源を利用して、高効率に大規模水素製造が可能な方法のひとつである。ISプロセスの研究開発課題は、硫酸やヨウ化水素酸などの厳しい腐食環境における工業材料製機器の健全性とそれらの機器による安定した水素製造の実証である。原子力機構では、工業材料製の耐食機器を開発し、それらの機器を組み込んだ水素製造試験設備を製作し、上記研究開発課題の解決に向け、本試験設備の試験運転を進めている。安定した水素製造を行うために、HI-I-H
O溶液の安定送液技術の開発、大量漏えいを防止するためのグラスライニング材の品質保証の改善、ブンゼン反応器における硫酸脱水法によるヨウ素析出防止技術の開発を行った。これらの改良により、水素製造量約30L/h、150時間の連続水素製造に成功し、厳しい腐食環境における工業材料製機器の健全性及び安定した水素製造を実証した。
武田 哲明*; 稲垣 嘉之; 相原 純; 青木 健; 藤原 佑輔; 深谷 裕司; 後藤 実; Ho, H. Q.; 飯垣 和彦; 今井 良行; et al.
High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02
本書は、原子力機構における今までの高温ガス炉の研究開発の総括として、HTTRの設計、燃料、炉内構造物や中間熱交換器などの要素技術の開発、出力上昇試験、950Cの高温運転、安全性実証試験などの運転経験及び成果についてまとめたものである。また、HTTRでの知見をもとに、商用炉の設計、高性能燃料、ヘリウムガスタービン、ISプロセスによる水素製造などの要素技術開発の現状について記述しており、今後の高温ガス炉の開発に非常に有用である。本書は、日本機械学会の動力エネルギーシステム部門による化石燃料及び原子力によるエネルギーシステムの技術書のシリーズの一冊として刊行されるものである。
Myagmarjav, O.; 田中 伸幸; 野村 幹弘*; 久保 真治
International Journal of Hydrogen Energy, 44(59), p.30832 - 30839, 2019/11
被引用回数:12 パーセンタイル:33.03(Chemistry, Physical)In this study, the catalytic decomposition of hydrogen iodide was theoretically and experimentally investigated in a silica-based ceramic membrane reactor to assess the reactors suitability for thermochemical hydrogen production. The silica membranes were fabricated by depositing a thin silica layer onto the surface of porous alumina ceramic support tubes via counter-diffusion chemical vapor deposition of hexyltrimethoxysilane. The performance of the silica-based ceramic membrane reactor was evaluated by exploring important operating parameters such as the flow rates of the hydrogen iodide feed and the nitrogen sweep gas. The influence of the flow rates on the hydrogen iodide decomposition conversion was investigated in the lower range of the investigated feed flow rates and in the higher range of the sweep-gas flow rates. The experimental data agreed with the simulation results reasonably well, and both highlighted the possibility of achieving a conversion greater than 0.70 at decomposition temperature of 400C. Therefore, the developed silica-based ceramic membrane reactor could enhance the total thermal efficiency of the thermochemical process.
Myagmarjav, O.; 岩月 仁; 田中 伸幸; 野口 弘喜; 上地 優; 井岡 郁夫; 久保 真治; 野村 幹弘*; 八巻 徹也*; 澤田 真一*; et al.
International Journal of Hydrogen Energy, 44(35), p.19141 - 19152, 2019/07
被引用回数:18 パーセンタイル:46.97(Chemistry, Physical)Thermochemical hydrogen production has attracted considerable interest as a clean energy solution to address the challenges of climate change and environmental sustainability. The thermochemical water-splitting iodine-sulfur (IS) process uses heat from nuclear or solar power and thus is a promising next-generation thermochemical hydrogen production method that is independent of fossil fuels and can provide energy security. This paper presents the current state of research and development of the IS process based on membrane techniques using solar energy at a medium temperature of 600C. Membrane design strategies have the most potential for making the IS process using solar energy highly efficient and economical and are illustrated here in detail. Three aspects of membrane design proposed herein for the IS process have led to a considerable improvement of the total thermal efficiency of the process: membrane reactors, membranes, and reaction catalysts. Experimental studies in the applications of these membrane design techniques to the Bunsen reaction, sulfuric acid decomposition, and hydrogen iodide decomposition are discussed.
Myagmarjav, O.; 田中 伸幸; 野村 幹弘*; 久保 真治
International Journal of Hydrogen Energy, 44(21), p.10207 - 10217, 2019/04
被引用回数:21 パーセンタイル:50.83(Chemistry, Physical)The potential of the silica membrane reactors for use in the decomposition of hydrogen iodide (HI) was investigated by simulation with the aim of producing CO-free hydrogen via the thermochemical water-splitting iodine-sulfur process. Simulation model validation was done using the data derived from an experimental membrane reactor. The simulated results showed good agreement with the experimental findings. The important process parameters determining the performance of the membrane reactor used for HI decomposition, namely, reaction temperature, total pressures on both the feed side and the permeate side, and HI feed flow rate were investigated theoretically by means of a simulation. It was found that the conversion of HI decomposition can be improved by up to four times (80%) or greater than the equilibrium conversion (20%) at 400
C by employing a membrane reactor equipped with a tubular silica membrane. The features to design the membrane reactor module for HI decomposition of thermochemical iodine-sulfur process were discussed under a wide range of operation conditions by evaluating the relationship between HI conversion and number of membrane tubes.
Myagmarjav, O.; 田中 伸幸; 野村 幹弘*; 久保 真治
International Journal of Hydrogen Energy, 42(49), p.29091 - 29100, 2017/12
被引用回数:24 パーセンタイル:53.51(Chemistry, Physical)熱化学水素製造法ISプロセスにおいて水素生成する反応であるHI分解反応の分解率を向上させるため、水素分離膜を用いた膜反応器の適用を検討している。本研究では、高性能な水素分離膜を開発するため、HTMOSをシリカ源に用い-アルミナ基材上に対向拡散CVD法を用いて製膜したシリカ膜の性能を調べた。
-アルミナに直接製膜した膜よりも
-アルミナをコーティングした
-アルミナ基材上に製膜した膜の方が、高い水素透過性を示すこと、および、450
Cの製膜条件で高い水素選択性ならびに水素透過性が得られることを見い出した。さらに、製膜した膜を適用した膜反応器において、HI分解反応を行い、平衡分解率(20%)を超える0.48の水素転化率を得ることができた。
Myagmarjav, O.; 池田 歩*; 田中 伸幸; 久保 真治; 野村 幹弘*
International Journal of Hydrogen Energy, 42(9), p.6012 - 6023, 2017/03
被引用回数:23 パーセンタイル:52.07(Chemistry, Physical)A high performance hydrogen-permselective silica membrane derived from hexyltrimethoxysiline (HTMOS) Si-precursor was developed to enhance chemical equilibrium ratio of hydrogen iodide (HI) decomposition in thermochemical water-splitting iodine-sulfur (IS) process. The silica membrane, called the HTMOS membrane, was prepared via a counter diffusion chemical vapor deposition method. The HTMOS membrane prepared at an optimal condition of 450C within 5 min showed highest H
permeance of the order of 10
mol Pa
m
s
with a H
/SF
selectivity of 276. It was found that the HTMOS membrane was stable in HI exposure at 400
C during 8 h and its HI permeance was the order of 10
mol Pa
m
s
. It was demonstrated that the newly developed the HTMOS membrane could be a promising candidate for HI decomposition membrane reactor at working temperature of around 400
C.
野口 弘喜; Myagmarjav, O.
今 肇*
【課題】水素分離膜構造体の製造において、製膜時の液だれ等によりコーティングのムラ、膜厚の厚い部分の剥離、クラック等の発生を防止する。 【解決手段】水素分離膜構造体の基材である多孔質支持体層を回転させながら、ゾルゲル溶液に多孔質支持体層の表面部分のみを浸漬させ、多孔質支持体層の表面にゾルゲル溶液を塗布する。
上地 優; 野口 弘喜; 田中 伸幸; Myagmarjav, O.; 杉本 千紘; 竹上 弘彰
no journal, ,
本研究では、連続水素試験設備の運用中に発見された耐食機器の工学的問題に焦点を当てる。グラスライニング配管はフランジとフッ素樹脂ガスケットで固定されている。試運転後の分解点検において、母材の腐食とシール面のガラスに小さな亀裂が観察された。この現象は硫酸溶液用配管では観察されず、ヨウ化水素(HI)用配管でのみ観察され、かつ高温領域で観察される傾向があった。これらの結果は、ヨウ化水素(HI)溶液の揮発性の高さが、配管接続部における微量の漏れを生じたと推察される。そこで、シール面圧を含む適切な締結条件を決定するため、装置に用いられるグラスライニング配管を用いた要素試験を行った。ボルト表面に取り付けたひずみゲージを用いて締結ボルトの軸力を測定し、面圧を算出した。その結果、実験後のガスケットの断面観察から、ガスケットへの浸透よりも界面漏れが支配的であり、適切な初期面圧の付与と増し締めが界面漏れの低減に有効であることがわかった。また、界面漏れ時間経過とともに拡大するが、最初の50時間を過ぎると緩和し、200時間までの試験においてグラスライニング配管の腐食・破損を生じないことを確認した。
Myagmarjav, O.; 田中 伸幸; 竹上 弘彰
no journal, ,
The high-temperature gas-cooled reactor (HTGR) has excellent safety features and can generate heat above 900C, making it possible to effectively use the heat not only for power generation but also for other purposes, such as low-cost, carbon-free hydrogen production. The thermochemical iodine-sulfur process is a promising hydrogen production method suitable for coupling with HTGRs. We, JAEA, have made a significant contribution to the iodine-sulfur process hydrogen production using HTGRs. One of the major challenges in the development of the iodine-sulfur process is the efficient separation of hydrogen during hydrogen iodide (2HI
H
+ I
) decomposition. Since the equilibrium conversion of HI decomposition is as low as 20%, it is necessary to introduce membrane reactors with H
separation membranes to improve the conversion rate. No membrane exists that can efficiently separate H
while handling corrosive gas (HI, I
) and high temperature. Therefore, we developed a new silica membrane for H
separation with the required properties. Using this membrane, we fabricated a lab-scale membrane reactor and succeeded in increasing the conversion rate of HI decomposition from the current 20% (equilibrium conversion) to the target 70%. This achievement opens up new applications of silica membrane reactor technology for nuclear H
production.
杉本 千紘; Myagmarjav, O.; 田中 伸幸; 野口 弘喜; 竹上 弘彰; 久保 真治
no journal, ,
熱化学水素製造法ISプロセスの水素生成にはヨウ化水素(HI)分解反応を用いる。HI分解反応の平衡転化率は20%であるため、転化率を向上させるためにセラミックス製の水素分離膜を導入したHI分解膜反応器が有効である。水素は分圧差を駆動力として水素分離膜を透過するため、膜反応器を実用化するためには圧力容器内の管板と管状の分離膜の間を封止し、高圧側から低圧側へのリーク流量を低く保つことが必要不可欠である。本研究は封止部の候補として膨張黒鉛グランドパッキンを取り上げ、リーク流量を実験的に評価した。ステンレス製の模擬管をパッキンで封止し、模擬ガスのヘリウムを封入し、ヘリウム検知器でシール部のリーク流量を測定した。膜反応器の起動停止を想定した熱サイクル試験及び分圧差依存性試験を行った。熱サイクル試験では450Cのリーク流量が2
10
Pa m
s
とバブルリーク試験の測定限界値(1
10
Pa m
s
)に相当する小さな値であり、パッキンが膜反応器の起動停止を含む運転条件においても封止部として機能していることが明らかにした。また、分圧差とリーク流量が比例していることから、異なる圧力条件におけるリーク流量の推定を可能とするデータを得ることができた。
Myagmarjav, O.; 野口 弘喜; 田中 伸幸; 上地 優; 小野 正人; 竹上 弘彰; 野村 幹弘*; 久保 真治
no journal, ,
Clean and alternative energy are driving global research for sustainability, with a focus on hydrogen production through the innovative thermochemical water-splitting iodine-sulfur (IS) process. This process, powered by solar or nuclear energy, decomposes water into hydrogen, relying on three chemical reactions (Bunsen reaction, sulfuric acid decomposition and hydrogen iodide decomposition. A major challenge is efficiently separating hydrogen from iodine and hydrogen iodide generated during HI decomposition (2HI H
+ I
). Silica membranes offer a promising solution due to their thermal and chemical stability. These membranes are produced as thin silica films carefully coated onto porous supports. However, it is crucial to note that the presence of pinhole defects in these supports can result in an undesirable deterioration, and even the loss of the typical separation capabilities of silica membranes. To address the issue of pinhole defects in the membrane support, a modified dip-coating technique was introduced. This innovative approach utilized rotational dipping, resulting in a new support composed of two distinct layers of
-Al
O
with a gradient structure that demonstrated outstanding pinhole prevention, reproducibility, and a consistently smooth surface. These improvements were achieved through careful consideration of factors such as rotary speed, duration, and coating solution properties.
Myagmarjav, O.; 池田 歩*; 野村 幹弘*; 久保 真治
no journal, ,
熱化学水素製造法ISプロセスにおけるHI分解反応のワンパス分解率を向上させるため、水素選択透過性シリカ膜の開発を行った。対向拡散CVDを用い、多孔質アルミナを基材(直径10mm)とした水素分離膜を作製した。Hガス, H
ガスおよびSF
を用いたガス透過試験により、CVDプロセス中の製膜条件(窒素ガス流量,酸素ガス流量)が膜性能(選択率)に関連すること明らかにし、製膜条件の最適化により膜性能が向上する可能性を示した。
Myagmarjav, O.; 田中 伸幸; 野口 弘喜; 久保 真治; 野村 幹弘*; 竹上 弘彰
no journal, ,
Hydrogen is attracting global attention as an energy carrier for future energy delivery systems because of its lack of carbon dioxide emission. To realize a hydrogen energy society, it is necessary to develop effective and safe hydrogen-production methods. The thermochemical iodine-sulfur process is one of the promising methods for massive hydrogen production without carbon dioxide emissions. Separation of hydrogen from gaseous mixture of hydrogen iodide and iodine is one of the technical issues in the development of this process. Silica is the most developed of the porous ceramics and is one of the most promising materials for hydrogen-separation membranes. In the present work, a high performance silica membrane was developed for application in membrane reactors that produce hydrogen by hydrogen iodide decomposition. These silica membranes were prepared with a three-layer structure comprising an porous alumina support layer, an intermediate silica layer fabricated using a sol-gel, and a top silica layer fabricated by counter-diffusion chemical vapor deposition. Scaling up of this type of silica membrane is attempted for the first time in order to produce hydrogen at a large-scale. The resulting membranes exhibit good surface uniformity with length and have no defects, especially existence of pinholes. Thus, these silica membranes appear to be suitable for membrane reactor applications to produce hydrogen in on a large-scale.