Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hagiwara, Hiroki; Watanabe, Yusuke; Konishi, Hiromi*; Funaki, Hironori; Fujiwara, Kenso; Iijima, Kazuki
Applied Geochemistry, 190, p.106490_1 - 106490_10, 2025/10
Nakayama, Masashi; Ishii, Eiichi; Hayano, Akira; Aoyagi, Kazuhei; Murakami, Hiroaki; Ono, Hirokazu; Takeda, Masaki; Mochizuki, Akihito; Ozaki, Yusuke; Kimura, Shun; et al.
JAEA-Review 2025-027, 80 Pages, 2025/09
The Horonobe Underground Research Laboratory Project is being pursued by the Japan Atomic Energy Agency to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2025, we continue R&D on "Study on near-field system performance in geological environment" and "Demonstration of repository design options". These are identified as key R&D challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. In the "Study on near-field system performance in geological environment", we continue to obtain data from the full-scale engineered barrier system performance experiment, and work on the specifics of the full-scale engineered barrier system dismantling experiment. As for "Demonstration of repository design options", the investigation, design, and evaluation techniques are to be systemized at various scales, from the tunnel to the pit, by means of an organized set of evaluation methodologies for confinement performance at these respective scales. Preliminary borehole investigations will be conducted within a 500 m gallery, with the objectives of obtaining rock strength and rock permeability data, as well as surveying the extent of the excavation damaged zone surrounding the test tunnel via tomographic analysis. A planning study for the in-situ construction test will be conducted to investigate the construction of backfill material and watertight plugs. The volume of water inflow associated with the excavation of the 500 m gallery will be observed, and its magnitude will be compared with the range of water inflow predicted in the analysis. The test plan to determine the extent of the excavation damaged zone around the pit, which is planned to be constructed in the 500 m gallery, will be studied to determine the in-situ excavation damaged zone. In addition, the investigation and evaluation methods for the amount of water inflow from fractures and the extent of the excavation damaged zone around the pit will be organized. Concerning the construction and maintenance of the subsurface facilities, excavation of the West Access Shaft and the 500 m gallery will continue. It is anticipated that the construction of the facilities will be completed by the end of the fiscal year 2025. In addition, we continue R&D on the following three tasks in the Horonobe International Project; Task A: Solute transport experiment with model testing, Task B: Systematic integration of repository technology options, and Task C: Full-scale engineered barrier system dismantling experiment.
Terasaka, Yuta; Sato, Yuki; Ichiba, Yuta*
Radiation Measurements, 187, p.107486_1 - 107486_8, 2025/09
Yoshida, Kazuo; Hiyama, Mina*; Tamaki, Hitoshi
JAEA-Research 2025-003, 24 Pages, 2025/06
An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (RuO) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. RuO
is expected to be absorbed chemically into water dissolving nitrous acid. Condensation of mixed vapor plays an important role for Ru transporting behavior in the facility building. The thermal-hydraulic behavior in the facility building is simulated with MELCOR code. The latent heat, which is a governing factor for vapor condensing behavior, has almost same value for nitric acid and water at the temperature range under 120 centigrade. Considering this thermal characteristic, it is assumed that the amount of nitric acid is substituted with mole-equivalent water in MELCOR simulation. Compensating modeling induced deviation by this assumption have been assembled with control function features of MELCOR. The comparison results have been described conducted between original simulation and modified simulation with compensating model in this report. It has been revealed that the total amount of pool water in the facility was as same as both simulations.
Yanagisawa, Hiroshi; Motome, Yuiko
JAEA-Research 2025-001, 99 Pages, 2025/06
The detailed computational models for nuclear criticality analyses on the first startup cores of NSRR (Nuclear Safety Research Reactor), which is categorized as a TRIGA-ACPR (Annular Core Pulse Reactor), were created for the purposes of deeper understandings of safety inspection data on the neutron absorber rod worths of reactivity and improvement of determination technique of the reactivity worths. The uncertainties in effective neutron multiplication factor (k) propagated from errors in the geometry, material, and operation data for the present models were evaluated in detail by using the MVP version 3 code with the latest Japanese nuclear data library, JENDL-5, and the previous versions of JENDL libraries. As a result, the overall uncertainties in k
for the present models were evaluated to be in the range of 0.0027 to 0.0029
k
. It is expected that the present models will be utilized as the benchmark on k
for TRIGA-ACPR. Moreover, it is confirmed that the overall uncertainties were sufficiently smaller than the values of absorber rod worths determined in NSRR. Thus, it is also considered that the present models are applicable to further analyses on the absorber rod worths in NSRR.
Shimada, Asako; Hemmi, Ko; Ohira, Saki; Iida, Yoshihisa
Analytical Sciences, 9 Pages, 2025/06
Sugita, Yutaka; Ono, Hirokazu; Beese, S.*; Pan, P.*; Kim, M.*; Lee, C.*; Jove-Colon, C.*; Lopez, C. M.*; Liang, S.-Y.*
Geomechanics for Energy and the Environment, 42, p.100668_1 - 100668_21, 2025/06
Times Cited Count:1 Percentile:77.92(Energy & Fuels)The international cooperative project DECOVALEX 2023 focused on the Horonobe EBS experiment in the Task D, which was undertaken to study, using numerical analyses, the thermo-hydro-mechanical (or thermo-hydro) interactions in bentonite based engineered barriers. One full-scale in-situ experiment and four laboratory experiments, largely complementary, were selected for modelling. The Horonobe EBS experiment is a temperature-controlled non-isothermal experiment combined with artificial groundwater injection. The Horonobe EBS experiment consists of the heating and cooling phases. Six research teams performed the THM or TH (depended on research team approach) numerical analyses using a variety of computer codes, formulations and constitutive laws.
Ueno, Akio*; Sato, Kiyoshi*; Tamamura, Shuji*; Murakami, Takuma*; Inomata, Hidenori*; Tamazawa, Satoshi*; Amano, Yuki; Miyakawa, Kazuya; Naganuma, Takeshi*; Igarashi, Toshifumi*
International Journal of Systematic and Evolutionary Microbiology, 75(6), p.006802_1 - 006802_11, 2025/06
no abstracts in English
Takei, Hayanori
Journal of Nuclear Science and Technology, 45 Pages, 2025/06
The Japan Atomic Energy Agency is working on the research and development of an accelerator-driven nuclear transmutation system (ADS) for transmuting minor actinides. This system combines a subcritical nuclear reactor with a high-power superconducting proton linear accelerator (JADS-linac). One of the factors limiting the advancement of the JADS-linac is beam trips, which often induce thermal cycle fatigue, thereby damaging the components in the subcritical core. The average beam current of the JADS-linac is 32 times higher than that of the linear accelerator (linac) of the Japan Proton Accelerator Research Complex (J-PARC). Therefore, according to the development stage, comparing the beam trip frequency of the JADS-linac with the allowable beam trip frequency (ABTF) is necessary. Herein the beam trip frequency of the JADS-linac was estimated through a Monte Carlo program using the reliability functions based on the operational data of the J-PARC linac. The Monte Carlo program afforded the distribution of the beam trip duration, which cannot be obtained using traditional analytical methods. Results show that the frequency of the beam trips with a duration exceeding 5 min must be reduced to 27% of the current J-PARC linac level to be below the ABTF.
Aoyagi, Kazuhei; Ozaki, Yusuke; Hayano, Akira; Ono, Hirokazu; Tachi, Yukio
Nihon Genshiryoku Gakkai-Shi ATOMO, 67(6), p.354 - 358, 2025/06
Japan Atomic Energy Agency launched the Horonobe International Project (HIP) utilizing the Horonobe Underground Research Laboratory. The main objectives of this project are to develop and demonstrate advanced technologies to be used in repository design, operation and closure and a realistic safety assessment in deep geological disposal, and to encourage and train the next generation of engineers and researchers. In this review, an overview of the HIP is presented.
Toyota, Kodai; Onizawa, Takashi; Wakai, Eiichi*
Research & Development in Material Science (Internet), 21(5), p.2632 - 2637, 2025/06
Wilson, J.*; Sasamoto, Hiroshi; Tachi, Yukio; Kawama, Daisuke*
Applied Clay Science, 275, p.107862_1 - 107862_15, 2025/05
Times Cited Count:0 Percentile:0.00High-Level Radioactive Waste (HLW) repositories include iron or steel-based containers/overpack and bentonite buffers. Over the last 25 years or so, research efforts have attempted to elucidate the nature of iron-bentonite interactions, especially the potential for the deleterious alteration of the swelling clay component (smectite), to iron-rich layer silicates, some of which lack the capacity for intracrystalline swelling. This could result in a reduction or loss in swelling pressure in the bentonite buffer which is designed to protect waste containers from shear forces and also acts to restrict water and solute transport, as part of an engineered barrier system. Most data on iron-bentonite interactions come from experimental and geochemical modelling studies, as natural analogue data are lacking. The data suggests that there is the potential for the development of an iron-rich bentonite alteration zone with smectite (generally present as the aluminous montmorillonite type) undergoing alteration to iron-rich solids, including layer silicates and steel corrosion products such as green rust or magnetite. The evidence available is complex, arguably incomplete, with many potential complex couplings. Many uncertainties remain despite efforts taken over the last 25 years, but plausible scenarios for iron-bentonite interactions have been identified and possible implications for buffer properties have been suggested.
Sonehara, Masateru; Okano, Yasushi; Uchibori, Akihiro; Oki, Hiroshi*
Journal of Nuclear Science and Technology, 62(5), p.403 - 414, 2025/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)For sodium-cooled fast reactors, understanding sodium combustion behaviour is crucial for managing sodium leakage accidents. In this study, we perform benchmark analyses of the Sandia National Laboratories (SNL) T3 experiment using the multi-dimensional thermal hydraulic code AQUA-SF. Conducted in an enclosed space with a large vessel volume of 100 m and a sodium mass flow rate of 1 kg/s, the experiment highlighted the multi-dimensional effects of local temperature increase shortly after sodium injection. This study aims to extend the capabilities of AQUA-SF by focusing on the simulation of these multi-dimensional temperature variations, in particular the formation of high temperature regions at the bottom of the vessel. The proposed models include the temporary stopping of sodium droplet ignition and spray combustion of sodium splash on the floor. Furthermore, it has been shown that additional heat source near the floor is essential to enhance the reproduction of the high temperature region at the bottom. Therefore, case studies including sensitivity analyses of spray cone angle and prolonged combustion of droplets on the floor are conducted. This comprehensive approach provides valuable insights into the dynamics of sodium combustion and safety measures in sodium-cooled fast reactors.
Takahatake, Yoko; Watanabe, So; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki
Progress in Nuclear Science and Technology (Internet), 7, p.195 - 198, 2025/05
Extraction chromatgraphy technology for trivalent minor actinide (MA(III) ; Am(III) and Cm(III)) recovery from the solution generated by an extraction process in reprocessing of spent nuclear fuel has been developed. A fine particle is generated in the solution. The fine particle must be removed before MA recovery operation, because that leads clogging of the extraction chlomatography column. In order to prevent clogging the column, filtration system utilizing porous silica beads packed column has been designed. In this study, a fine particle trapping system was developed and particle removal performance of the system was experimentally evaluated using alumina particles as simulated fine particle. Column experiments revealed that the fine particle with the particle size from 0.12 to 15 m is cause of clogging of the filtration column. Since simulated fine particles were trapped on filtration experiments, a filtration system using the porous silica beads column is practical,
Meigo, Shinichiro; Iwamoto, Hiroki; Sugihara, Kenta*; Hirano, Yukinori*; Tsutsumi, Kazuyoshi*; Saito, Shigeru; Maekawa, Fujio
JAEA-Technology 2024-026, 123 Pages, 2025/03
Based on the design of the ADS Target Test Facility (TEF-T) at the J-PARC Transmutation Experimental Facility, a conceptual study was conducted on the J-PARC proton beam irradiation facility. This research was carried out based on the recommendations of the Nuclear Transmutation Technology Evaluation Task Force of the MEXT. The recommendations state that it is desirable to consider facility specifications that can make the most of the benefits of using the existing J-PARC proton accelerator while also solving the engineering issues of the ADS. We considered facilities that could respond to a variety of needs while reducing the facilities that were not needed in the TEF-T design. In order to clarify these diverse needs, we investigated the usage status of representative accelerator facilities around the world. As a result, it became clear that the main purposes of these facilities were (1) Material irradiation, (2) Soft error testing of semiconductor devices using spallation neutrons, (3) Production of RI for medical use, and (4) Proton beam use, and we investigated the facilities necessary for these purposes. In considering the facility concept, we assumed a user community in 2022 and reflected user opinions in the facility design. This report summarizes the results of the conceptual study of the proton irradiation facility, various needs and responses to them, the roadmap for facility construction, and future issues.
Nagata, Hiroshi; Kochiyama, Mami; Chinone, Marina; Sugaya, Naoto; Nishimura, Arashi; Ishikawa, Joji; Sakai, Akihiro; Ide, Hiroshi
JAEA-Data/Code 2024-016, 44 Pages, 2025/03
The elemental composition of the structural materials of nuclear reactor facilities is used as one of the important parameters in activation calculations that are evaluated when formulating decommissioning plans. Regarding the elemental composition of aluminum alloys and other materials used as structural materials for test and research reactors, sufficient data is not available regarding elements other than the major elements. For this reason, samples were collected from aluminum alloy, beryllium, hafnium, and other materials that have been used as the main structural materials of JMTR (Japan Materials Testing Reactor), and their elemental compositions were analyzed. This report summarizes the elemental composition data of 78 elements obtained in FY2023.
Ono, Hirokazu; Takayama, Yusuke*
Geomechanics for Energy and the Environment, 41, p.100636_1 - 100636_14, 2025/03
Times Cited Count:1 Percentile:77.92(Energy & Fuels)Kim, M.*; Lee, C.*; Sugita, Yutaka; Kim, J.-S.*; Jeon, M.-K.*
Geomechanics for Energy and the Environment, 41, p.100628_1 - 100628_9, 2025/03
Times Cited Count:1 Percentile:77.92(Energy & Fuels)This study investigates the impact of primary variables selection on the modeling of non-isothermal two-phase flow, by using the numerical work on the full-scale Engineered Barrier System (EBS) experiment conducted at Horonobe URL as part of the DECOVALEX-2023 project. A validated numerical model is employed to simulate the coupled thermo-hydrological behavior of heterogeneous porous media within the EBS. Two different primary variable schemes are compared in discretizing the governing equations, revealing significant difference in results.
Arai, Tsuyoshi*; Nakamura, Fumiya*; Abe, Ryoji*; Ueno, Fuga*; Seko, Noriaki*; Arai, Yoichi; Watanabe, So
Progress in Nuclear Science and Technology (Internet), 7, p.147 - 153, 2025/03
no abstracts in English
Fujita, Tatsuya
Journal of Nuclear Science and Technology, 62(5), p.470 - 479, 2025/01
This study confirmed the efficiency of a combined approach of the control variates (CV) and the Latin hypercube sampling (LHS), which enhanced the random-sampling-based uncertainty quantification due to cross-section (XS) covariance data, by considering the effect of statistical variation and also performed the sensitivity analyses on the influence due to the selection of alternative parameter to apply CV. The convergence performance for the uncertainty of infinite multiplication factor (k-infinity) during the random sampling was compared between several efficient sampling techniques such as the antithetic sampling (AS), LHS, CV, and the combined approaches of them in the PWR-UO fuel assembly geometry. The k-infinity uncertainty was evaluated by statistically processing several times Serpent2 calculations using perturbed ACE-formatted XS files based on ENDF/B-VIII.0. CV+LHS was more efficient than AS, LHS, and CV+AS. In addition, sensitivity analyses were performed to select alternative parameters used in CV. The 3
3 mini fuel lattice calculation can improve the efficiency of CV+LHS. The reason was qualitatively considered that this calculation can capture the influence of XS covariance data for Gd isotopes. Consequently, the applicability of CV+LHS for the improvement of convergence performance to evaluate the k-infinity uncertainty during the random sampling was confirmed.