Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 62

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-002, 85 Pages, 2022/06

JAEA-Review-2022-002.pdf:3.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis" conducted in FY2020. In this work, in order to ensure the long-term reliability of steel structures that ensure important confinement functions in the debris removal process, such as existing PCVs and newly constructed negative pressure maintenance systems and piping, corrosion phenomena in wet environments where $$alpha$$- and $$beta$$-ray emitting nuclides come into contact with steel are clarified for the first time. At the same time, we will develop a new corrosion prevention technology that has excellent basic applicability to PCVs and has

Journal Articles

A Comparative CFD exercise on bubble hydrodynamics using Euler-Euler and interface tracking approaches

Dehbi, A.*; Cheng, X.*; Liao, Y.*; Okagaki, Yuria; Pellegrini, M.*

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 15 Pages, 2022/03

Journal Articles

Development of the high-power spallation neutron target of J-PARC

Haga, Katsuhiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Wakai, Eiichi; Futakawa, Masatoshi

Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 13 Pages, 2022/03

The cross-flow type target was developed as the basic design of mercury target in J-PARC, and the design has been improved to realize the MW-class pulsed spallation neutron source. When the high-power and short-pulsed proton beam is injected into the mercury target, pressure waves are generated in mercury by rapid heat generation. The pressure waves induce the cavitation damages on the target vessel. Two countermeasures were adopted, namely, the injection of microbubbles into mercury and the double walled structure at the beam window. The bubble generator was installed in the target vessel to absorb the volume inflation of mercury and mitigate the pressure waves. Also, the double walled target vessel was designed to suppress the cavitation damage by the large velocity gradient of rapid mercury flow in the narrow channel of double wall. Finally, we could attain 1 MW beam operation with the duration time of 36.5 hours in 2020, and achieved the long term stable operation with 740 kW from April in 2021. This report shows the technical development of the high-power mercury target vessel in view of thermal hydraulics to attain 1 MW operation.

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2021-049, 67 Pages, 2022/01

JAEA-Review-2021-049.pdf:7.54MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2020. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, and neutron detectors to be developed in this

Journal Articles

Analytical study on removal mechanisms of cesium aerosol from a noble gas bubble rising through liquid sodium pool, 2; Effects of particle size distribution and agglomeration in aerosols

Miyahara, Shinya*; Kawaguchi, Munemichi; Seino, Hiroshi; Atsumi, Takuto*; Uno, Masayoshi*

Proceedings of 28th International Conference on Nuclear Engineering; Nuclear Energy the Future Zero Carbon Power (ICONE 28) (Internet), 6 Pages, 2021/08

In a postulated accident of fuel pin failure of sodium cooled fast reactor, a fission product cesium will be released from the failed pin as an aerosol such as cesium iodide and/or cesium oxide together with a fission product noble gas such as xenon and krypton. As the result, the xenon and krypton released with cesium aerosol into the sodium coolant as bubbles have an influence on the removal of cesium aerosol by the sodium pool in a period of bubble rising to the pool surface. In this study, cesium aerosol removal behavior due to inertial deposition, sedimentation and diffusion from a noble gas bubble rising through liquid sodium pool was analyzed by a computer program which deals with the expansion and the deformation of the bubble together with the aerosol absorption considering the effects of particle size distribution and agglomeration in aerosols. In the analysis, initial bubble diameter, sodium pool depth and temperature, aerosol particle diameter and density, initial aerosol concentration in the bubble were changed as parameter, and the results for the sensitivities of these parameters on decontamination factor (DF) of cesium aerosol were compared with the results of the previous study in which the effects of particle size distribution and agglomeration in aerosols were not considered. From the results, it was concluded that the sensitivities of initial bubble diameter, the aerosol particle diameter and density to the DF became significant due to the inertial deposition of agglomerated aerosols. To validate these analysis results, the simulation experiments have been conducted using a simulant particles of cesium aerosol under the condition of room temperature in water pool and air bubble systems. The experimental results were compared with the analysis results calculated under the same condition.

Journal Articles

Effect of gas microbubble injection and narrow channel structure on cavitation damage in mercury target vessel

Naoe, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Wakui, Takashi; Wakai, Eiichi; Haga, Katsuhiro; Takada, Hiroshi

Materials Science Forum, 1024, p.111 - 120, 2021/03

The mercury target vessel for the at the J-PARC neutron source is severely damaged by the cavitation caused by proton beam-induced pressure waves in mercury. To mitigate the cavitation damage, we adopted a double-walled structure with a narrow channel for the mercury at the beam window of the vessel. In addition, gas microbubbles were injected into the mercury to suppress the pressure waves. The front end of the vessel was cut out to inspect the effect of the damage mitigation technologies on the interior surface. The results showed that the double-walled target facing the mercury with gas microbubbles operating at 1812 MWh for an average power of 434 kW had equivalent damage to the single-walled target without microbubbles operating 1048 MWh for average power of 181 kW. The erosion depth due to cavitation in the narrow channel was clearly smaller than it was on the wall facing the bubbling mercury

Journal Articles

Lattice Boltzmann modeling and simulation of forced-convection boiling on a cylinder

Saito, Shimpei*; De Rosis, A.*; Fei, L.*; Luo, K. H.*; Ebihara, Kenichi; Kaneko, Akiko*; Abe, Yutaka*

Physics of Fluids, 33(2), p.023307_1 - 023307_21, 2021/02

 Times Cited Count:2 Percentile:90.05(Mechanics)

A Boiling phenomenon in a liquid flow field is known as forced-convection boiling. We numerically investigated the boiling system on a cylinder in a flow at a saturated condition. To deal with such a phenomenon, we developed a numerical scheme based on the pseudopotential lattice Boltzmann method. The collision was performed in the space of central moments (CMs) to enhance stability for high Reynolds numbers. Furthermore, additional terms for thermodynamic consistency were derived in a CMs framework. The effectiveness of the model was tested against some boiling processes, including nucleation, growth, and departure of a vapor bubble for high Reynolds numbers. Our model can reproduce all the boiling regimes without the artificial initial vapor phase. We found that the Nukiyama curve appears even though the focused system is the forced-convection system. Also, our simulations support experimental observations of intermittent direct solid-liquid contact even in the film-boiling regime.

Journal Articles

Development of a multiphase particle method for melt-jet breakup behavior of molten core in severe accident

Wang, Z.; Iwasawa, Yuzuru; Sugiyama, Tomoyuki

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 12 Pages, 2020/08

Journal Articles

Analytical study on removal mechanisms of cesium aerosol from a noble gas bubble rising through liquid sodium pool

Miyahara, Shinya*; Kawaguchi, Munemichi; Seino, Hiroshi

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08

In a postulated accident of fuel pin failure of sodium cooled fast reactor, a fission product cesium will be released as an aerosol such as cesium iodide and/or oxide together with xenon and/or krypton. In this study, cesium aerosol removal behavior due to inertial deposition, sedimentation and diffusion was analyzed by a computer program which deals with the expansion and the deformation of the bubble together with the aerosol absorption. Initial bubble diameter, sodium pool depth and temperature, aerosol particle diameter and density, initial aerosol concentration were changed as parameter. From the results, it was concluded that the initial bubble diameter was most sensitive parameter to the decontamination factor (DF). It was found that the sodium pool depth, the aerosol particle diameter and density have also important effect on the DF, but the sodium temperature has a marginal effect. To meet these results, the experiments are under planning to validate the results.

Journal Articles

Mitigation of cavitation damage in J-PARC mercury target vessel

Naoe, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Wakui, Takashi; Wakai, Eiichi; Haga, Katsuhiro; Takada, Hiroshi

JPS Conference Proceedings (Internet), 28, p.081004_1 - 081004_6, 2020/02

The beam window of the mercury target vessel in J-PARC is severely damaged by the cavitation. The cavitation damage is a crucial factor to limit lifetime of the target because it increases with the beam power. Therefore, mitigating cavitation damage is an important issue to operate the target stably for long time at 1 MW. At J-PARC, to mitigate the cavitation damage: gas microbubbles are injected into mercury for suppressing pressure waves, and double-walled structure with a narrow channel of 2 mm in width to form high-speed mercury flow ($$sim$$4m/s) has been adopted. After operation, the beam window was cut to inspect the effect of the cavitation damage mitigation on inner wall. We optimized cutting conditions through the cold cutting tests, succeeding in cutting the target No.2 (without damage mitigation technologies) smoothly in 2017, and target No.8 with damage mitigation technologies. In the workshop, progress of cavitation damage observation for the target vessel will be presented.

Journal Articles

Experimental study on local interfacial parameters in upward air-water bubbly flow in a vertical 6$$times$$6 rod bundle

Han, X.*; Shen, X.*; Yamamoto, Toshihiro*; Nakajima, Ken*; Sun, Haomin; Hibiki, Takashi*

International Journal of Heat and Mass Transfer, 144, p.118696_1 - 118696_19, 2019/12

 Times Cited Count:4 Percentile:49.6(Thermodynamics)

Journal Articles

Study on analysis method for inert gas behavior in liquid metal flow with considering dissolution and entrainment at free surface

Matsushita, Kentaro; Ito, Kei*; Ezure, Toshiki; Tanaka, Masaaki

Dai-24-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 5 Pages, 2019/06

In the design study on a sodium-cooled fast reactor (SFR), a numerical simulation code named SYRENA has been developed in Japan Atomic Energy Agency to analyze the behavior of gas bubbles and/or dissolved gas in the primary coolant system. In the present study, the effect of the non-condensable gas entrainment at the free surface on the bubble and the dissolved gas behavior in the primary coolant system were investigated for a typical pool type reactor, and also effect of a dipped-plate (D/P) installed below the free surface in the reactor vessel to suppress the gas bubble entrainment into the primary coolant system was especially investigated. It was clarified that the D/P was influential to the non-condensable gas behavior and the molar flow rate of gas bubbles in the primary coolant system varies depending on the relationship between the gas entrainment rate at the free surface and the exchange flow rate through the D/P.

Journal Articles

Parametric analysis of bubble and dissolved gas behavior in primary coolant system of sodium-cooled fast reactors

Matsushita, Kentaro; Ito, Kei*; Ezure, Toshiki; Tanaka, Masaaki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05

A numerical simulation code named SYRENA has been developed in JAEA to analyze the behavior of entrained bubbles and dissolved gas in the primary coolant of sodium-cooled fast reactor (SFR). In the present study, a flow network model of SYRENA to a hypothetical pool type reactor was developed and the non-condensable gas behavior was investigated through the comparison with that in the loop type reactor. The effect of the dipped-plate (D/P) tentatively introduced into the pool-type reactor on the gas behavior was investigated through the parametric analyses about the sodium exchange flow rate through the D/P and the gas entrainment rate at the free surface. It was suggested that the increase in the exchange flow rate through the D/P doesn't always work to decrease the bubble volume in the primary coolant system.

Journal Articles

Numerical study on the potential of cavitation damage in a lead-bismuth eutectic spallation target

Wan, T.; Naoe, Takashi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Obayashi, Hironari; Sasa, Toshinobu

Materials, 12(4), p.681_1 - 681_15, 2019/02

 Times Cited Count:0 Percentile:0(Chemistry, Physical)

Journal Articles

Numerical study on effect of pressure on behavior of bubble coalescence by using CMFD simulation

Ono, Ayako; Suzuki, Takayuki*; Yoshida, Hiroyuki

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 6 Pages, 2018/07

The mechanism of critical heat flux (CHF) for higher system pressure remains to be clarified, even though it is important to evaluate the CHF for the light water reactor (LWR) which is operated under the high pressure condition. In this study, the process of bubble coalescence was simulated by using a computational multi-fluid dynamics (CMFD) simulation code TPFIT under various system pressure in order to investigate the behavior of bubbles as a basic study. The growth of bubbles was simulated by blowing of vapor from a tiny orifice simulating bubble bottom. One or four orifices were located on the bottom surface in this simulation study. The numerical simulations were conducted by varying the pressure and temperature.

Journal Articles

Current status of the high intensity pulsed spallation neutron source at J-PARC

Takada, Hiroshi

Plasma and Fusion Research (Internet), 13(Sp.1), p.2505013_1 - 2505013_8, 2018/03

The pulsed spallation neutron source of Japan Proton Accelerator Research Complex (J-PARC) has been supplying users with high intensity and sharp pulse cold neutrons using the moderators with following distinctive features; (1) 100% para-hydrogen for increasing pulse peak intensity with decreasing pulse tail, (2) cylindrical shape with 14 cm diam.$$times$$12 cm long for providing high intensity neutrons to wide neutron extraction angles of 50.8$$^{circ}$$, (3) neutron absorber made from Ag-In-Cd alloy to make pulse width narrower and pulse tails lower. Actually, it was measured at a low power operation that high neutron intensity of 4.5$$times$$10$$^{12}$$ n/cm$$^{2}$$/s/sr could be emitted from the coupled moderator surface for 1-MW operation, and a superior resolution of $$Delta$$d/d = 0.035% was achieved at a beamline (BL8) with a poisoned moderator, where d is the d-spacing of reflection. Towards the goal to achieve the target operation at 1-MW for 5000 h in a year, technical developments to mitigate cavitation damages on the target vessel with injecting gas micro-bubbles into mercury target and design improvement of target vessel structure to reducing welds and bolt connections as much as possible are under way.

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 1; Pulsed spallation neutron source

Takada, Hiroshi; Haga, Katsuhiro; Teshigawara, Makoto; Aso, Tomokazu; Meigo, Shinichiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Oi, Motoki; Harada, Masahide; et al.

Quantum Beam Science (Internet), 1(2), p.8_1 - 8_26, 2017/09

At the Japan Proton Accelerator Research Complex (J-PARC), a pulsed spallation neutron source provides neutrons with high intensity and narrow pulse width to promote researches on a variety of science in the Materials and life science experimental facility. It was designed to be driven by the proton beam with an energy of 3 GeV, a power of 1 MW at a repetition rate of 25 Hz, that is world's highest power level. A mercury target and three types of liquid para-hydrogen moderators are core components of the spallation neutron source. It is still on the way towards the goal to accomplish the operation with a 1 MW proton beam. In this paper, distinctive features of the target-moderator-reflector system of the pulsed spallation neutron source are reviewed.

Journal Articles

Gas retention behavior of carbonate slurry under $$gamma$$-ray irradiation

Motooka, Takafumi; Nagaishi, Ryuji; Yamagishi, Isao

QST-M-2; QST Takasaki Annual Report 2015, P. 95, 2017/03

We conducted $$gamma$$ ray irradiation test using simulated carbonate slurry to investigate the cause of stagnant water over the high integrity container (HIC). This test was performed at Co-60 irradiation facility in Takasaki Advanced Radiation Research Institute. We observed a rise in water level, air bubbles in the slurry, a supernatant when the carbonate slurry with 95 g/L density was irradiated by $$gamma$$ ray at a dose rate of 8.5 kGy/h. The cause of the rise in water level was regarded as the volume expansion by the gas retention of the carbonate slurry. It was suggested that the cause of stagnant water over the high integrity container might be the volume expansion by the gas retention.

Journal Articles

Improvement in quantitative performance of underwater laser-induced breakdown spectroscopy based on the understanding of laser ablation phenomena

Matsumoto, Ayumu

Reza Kako Gakkai-Shi, 23(3), p.222 - 231, 2016/10

no abstracts in English

Journal Articles

Physics-basis simulation of bubble pinch-off

Ito, Kei; Koizumi, Yasuo; Ohshima, Hiroyuki; Kawamura, Takumi*

Mechanical Engineering Journal (Internet), 3(3), p.15-00671_1 - 15-00671_9, 2016/06

62 (Records 1-20 displayed on this page)