Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Togawa, Orihiko; Hokama, Tomonori; Hiraoka, Hirokazu; Saito, Shota
JAEA-Research 2023-011, 78 Pages, 2024/03
When radionuclides are released into the atmospheric environment at a nuclear emergency, protective measures such as evacuation and temporal relocation are carried out using motor vehicles such as private cars and buses to reduce radiation exposure to residents. To confirm conditions of contamination for the evacuated/relocated residents and the used motor vehicles, contamination inspection is conducted in the middle of the route from border areas of Nuclear Emergency Planning Zone to evacuation shelters. In the present inspection in Japan, a value of OIL4 = 40,000 cpm is used as decontamination criteria. For the details and derivation methods of the value, however, no official documents are found which give systematically detailed descriptions and explanation. It is also recognized that even few experts on nuclear emergencies can explain these subjects in detail as a whole. In order to explain scientifically and technically the OIL4 value of decontamination criteria used in contamination inspection in Japan, this report aims at investigating and estimating the deviation methods of OIL4, and examining and considering these results. To achieve the objectives, we show the bases for decontamination criteria, and investigate and estimate the derivation methods for limits of a surface contamination density corresponding to the generic criteria for each exposure pathway. Moreover, we give the OIL4 value some consideration and suggestions from a viewpoint of positioning and feature of OIL4 in Japan, and cautionary points at revising the value.
Togawa, Orihiko; Hokama, Tomonori; Hiraoka, Hirokazu
JAEA-Review 2023-013, 48 Pages, 2023/08
When radionuclides are released into the atmospheric environment at a nuclear emergency, protective measures such as evacuation and temporal relocation are carried out using motor vehicles such as private cars and buses to reduce radiation exposure to residents. To confirm conditions of contamination for the evacuated or relocated residents, contamination inspection is conducted, in which it is important not to spoil its rapidity. In the present inspection, wipers and tires are designated to first measuring parts, and they are basically inspected by persons using GM survey meters. Utilization of portable radiation portal monitors is also being considered for rapid and efficient inspection of motor vehicles. In order to contribute to rapid and efficient operation of contamination inspection, this report investigated conditions of contamination and measures of decontaminations for motor vehicles at a nuclear emergency. Although available documents and information were quite few, results of the investigations described in the related documents were extracted and rearranged according to the objectives of this report. Furthermore, these results were considered from a viewpoint of rapid and efficient operation of contamination inspection.
Ikenoue, Tsubasa; Shimadera, Hikari*; Nakanishi, Takahiro; Kondo, Akira*
Water (Internet), 15(15), p.2734_1 - 2734_18, 2023/08
Times Cited Count:0 Percentile:0.00(Environmental Sciences)The Fukushima Daiichi Nuclear Power Plant accident caused an accumulation of Cs in coastal sediment. The
Cs supply from rivers to the ocean can affect the long-term fate of
Cs in coastal sediment. Since the Fukushima coastal river basins include large decontaminated and evacuation order areas, considering the decontamination work and resumption of agriculture is important for predicting the
Cs supply. We conducted a 30-year prediction of the
Cs supply from the Fukushima coastal rivers to the ocean using a distributed radiocesium prediction model, considering the effects of human activities. In river basins with decontaminated and evacuation order areas, human activities reduced the total
Cs outflow from agricultural lands, urban lands, and forest areas to the rivers and the
Cs supply to the ocean by 5.0% and 6.0%, respectively. These results indicated that human activities slightly impacted the
Cs outflow and supply. The
Cs supply from rivers impacted by the accident to the coastal sediment was estimated to correspond to 11-36% of the total
Cs in the coastal sediment in the early phase of the accident. Therefore, the
Cs supply from rivers to the ocean is important for the long-term behavior of
Cs in coastal sediment.
Collaborative Laboratories for Advanced Decommissioning Science; Shinshu University*
JAEA-Review 2022-067, 98 Pages, 2023/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of environmental mitigation technology with novel water purification agents" conducted in FY2021. The present study aims to develop a reusable adsorbent for strontium ions through joint research between Japan and the United Kingdom, and to reduce the amount of used adsorbent generated through the decontamination process. This fiscal year, the preparation method of materials was improved based on the results obtained in the first year of the project. Moreover, various metal salts were added as additives to see the influence on the yield and adsorption performance. Structural analyses were conducted by observing the resulting materials with SEM, and theoretical analyses were performed by combining ...
Komuro, Michiyasu; Kanazawa, Hiroyuki; Kokusen, Junya; Shimizu, Osamu; Honda, Junichi; Harada, Katsuya; Otobe, Haruyoshi; Nakada, Masami; Inagawa, Jun
JAEA-Technology 2021-042, 197 Pages, 2022/03
Plutonium Research Building No.1 was constructed in 1960 for the purpose of establishing plutonium handling technology and studying its basic physical properties. Radiochemical research, physicochemical research and analytical chemistry regarding solutions and solid plutonium compounds had been doing for the research program in Japan Atomic Energy Agency (JAEA). In 1964, the laboratory building was expanded and started the researching plutonium-uranium mixed fuel and reprocessing of plutonium-based fuel, playing an advanced role in plutonium-related research in Japan. Since then, the research target has been expanded to include transplutonium elements, and it has functioned as a basic research facility for actinides. The laboratory is constructed by concrete structure and it has the second floor, equipped with 15 glove boxes and 4 chemical hoods. Plutonium Research Building No.1 was decided as one of the facilities to be decommissioned by Japan Atomic Energy Agency Reform Plan in September 2014. So far, the contamination survey of the radioactive materials in the controlled area, the decontamination of glove boxes, and the consideration of the equipment dismantling procedure have been performed as planned. The radioisotope and nuclear fuel materials used in the facility have been transfer to the other facilities in JAEA. The decommissioning of the facility is proceeding with the goal of completing by decommissioning the radiation controlled area in 2026. In this report, the details of the decommissioning plan and the past achievements are reported with the several data.
Collaborative Laboratories for Advanced Decommissioning Science; Shinshu University*
JAEA-Review 2021-051, 81 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of environmental mitigation technology with novel water purification agents" conducted in FY2020. The present study aims to develop a reusable adsorbent for strontium ions through joint research between Japan and the United Kingdom, and to reduce the amount of used adsorbent generated through the decontamination process. The basic strategy of this research is to produce adsorbents and examine their Sr adsorption performance at Shinshu University. The structural analyses of the adsorbents are conducted by the Institute for Molecular Science (IMS) and the UK teams.
Miyahara, Shinya*; Kawaguchi, Munemichi; Seino, Hiroshi; Atsumi, Takuto*; Uno, Masayoshi*
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 6 Pages, 2021/08
In a postulated accident of fuel pin failure of sodium cooled fast reactor, a fission product cesium will be released from the failed pin as an aerosol such as cesium iodide and/or cesium oxide together with a fission product noble gas such as xenon and krypton. As the result, the xenon and krypton released with cesium aerosol into the sodium coolant as bubbles have an influence on the removal of cesium aerosol by the sodium pool in a period of bubble rising to the pool surface. In this study, cesium aerosol removal behavior due to inertial deposition, sedimentation and diffusion from a noble gas bubble rising through liquid sodium pool was analyzed by a computer program which deals with the expansion and the deformation of the bubble together with the aerosol absorption considering the effects of particle size distribution and agglomeration in aerosols. In the analysis, initial bubble diameter, sodium pool depth and temperature, aerosol particle diameter and density, initial aerosol concentration in the bubble were changed as parameter, and the results for the sensitivities of these parameters on decontamination factor (DF) of cesium aerosol were compared with the results of the previous study in which the effects of particle size distribution and agglomeration in aerosols were not considered. From the results, it was concluded that the sensitivities of initial bubble diameter, the aerosol particle diameter and density to the DF became significant due to the inertial deposition of agglomerated aerosols. To validate these analysis results, the simulation experiments have been conducted using a simulant particles of cesium aerosol under the condition of room temperature in water pool and air bubble systems. The experimental results were compared with the analysis results calculated under the same condition.
Katengeza, E. W.*; Ochi, Kotaro; Sanada, Yukihisa; Iimoto, Takeshi*; Yoshinaga, Shinji*
Health Physics, 121(1), p.48 - 57, 2021/07
Times Cited Count:2 Percentile:11.39(Environmental Sciences)Special reconstruction and revitalization bases were designated in Fukushima's difficult-to-return zones by the Japanese government as targets of intensive decontamination to drastically lower air dose rates and enable residents to return. A pond amidst residences of one of these bases was targeted for decontamination and this study aimed at evaluating the effect and effectiveness of the decontamination by decontamination factor, air dose rate reduction factor, and the additional annual effective dose to residents. Air dose rates were measured in-situ with KURAMMA-II while soil core samples were collected and measured for radioactivity in the laboratory by gamma spectrometry. Lower decontamination factors were observed for more deeply distributed radiocesium soil profiles whereas areas covered with gravel demonstrated the largest reduction in air dose rates. Decontamination effectively lowered the radiocesium inventory and air dose rates by 51% and 37-91% respectively. Moreover, the additional annual effective dose to the public changed from 1.70.79 mSv to 1.2
0.57 mSv because of decontamination representing a dose aversion of 29%. These findings demonstrate how decontaminating ponds in residential areas can help to further lower the external exposure.
Tsuji, Tomoyuki; Sugitsue, Noritake; Sato, Fuminori; Matsushima, Ryotatsu; Kataoka, Shoji; Okada, Shota; Sasaki, Toshiki; Inoue, Junya
Nihon Genshiryoku Gakkai-Shi ATOMO, 62(11), p.658 - 663, 2020/11
no abstracts in English
Miyahara, Shinya*; Kawaguchi, Munemichi; Seino, Hiroshi
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08
In a postulated accident of fuel pin failure of sodium cooled fast reactor, a fission product cesium will be released as an aerosol such as cesium iodide and/or oxide together with xenon and/or krypton. In this study, cesium aerosol removal behavior due to inertial deposition, sedimentation and diffusion was analyzed by a computer program which deals with the expansion and the deformation of the bubble together with the aerosol absorption. Initial bubble diameter, sodium pool depth and temperature, aerosol particle diameter and density, initial aerosol concentration were changed as parameter. From the results, it was concluded that the initial bubble diameter was most sensitive parameter to the decontamination factor (DF). It was found that the sodium pool depth, the aerosol particle diameter and density have also important effect on the DF, but the sodium temperature has a marginal effect. To meet these results, the experiments are under planning to validate the results.
Yamashita, Takuya; Sawada, Noriyoshi*
JAEA-Research 2019-010, 227 Pages, 2020/03
In order to support the decontamination activities proceeded by the national government and municipalities in terms of technology, we have developed a simulation system "RESET" which predicts the effect of decontamination. We also developed a "two-component model" for the purpose of predicting long-term changes in the air dose rate. We use these tools to perform decontamination simulation and predictive analysis of the air dose rate after decontamination, and provide information to the national government and municipalities aiming for reconstruction. In this report, the verification result of the prediction methods implemented using actual measurement data obtained in the "Decontamination model demonstration project in difficult-to-return zone" and "Survey result on transition of air dose rate after decontamination model demonstration project" conducted by Ministry of the Environment. In addition, the decontamination simulation conducted for the entire difficult-to-return area and the results of future prediction of the air dose rate after decontamination are shown.
Horiguchi, Naoki; Miyahara, Naoya; Uesawa, Shinichiro; Yoshida, Hiroyuki; Osaka, Masahiko
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05
For source term evaluation from reactor buildings (RBs) in LWR severe accidents, we have launched to develop an evaluation method of FP aerosol particle deposition onto surfaces of internal structures in an RB based on computational fluid dynamics (CFD). This paper describes development of a CFD simulation tool as the base part of the evaluation method. A preliminary simulation for a representative RB under a representative flow condition was conducted to confirm the tool performance by roughly grasping the deposition behaviors of FP aerosol particle and decontamination factor (DF) in the RB. Calculation results showed that most of aerosol particles were deposited along with gas flow formed by the internal structures in the RB, demonstrating the advantageous feature of the present CFD tool. The DFs from 4 to 14 were obtained with increase of the particle diameters from 0.1 to 10 m as expected in terms of the particle movement equation.
Umezawa, Katsuhiro; Morimoto, Yasuyuki; Nakayama, Takuya; Nakagiri, Toshio
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 6 Pages, 2019/05
In December 2016, the Ningyo-toge Environmental Engineering Center of Japan Atomic Energy Agency (JAEA Ningyo-toge) announced new concept of "Uranium and Environmental Research Platform". As part of the concept, uranium waste engineering research are now undergoing. The objective of the research is to establish the processing technology for safely and reasonable disposal of uranium waste. In particular, estimation of the amount of uranium and harmful substances and development of technologies to reduce their concentration in the waste to the permissive level for the disposal in shallow ground disposal are needed. We are now developing the technologies to reduce the concentration of uranium and harmful substances shown below. (1) Survey on uranium inventory. Uranium waste is now stored in 10-odd thousands of 200 L drums. We are surveying amount and chemical form of uranium in the drums. (2) Development of decontamination technology of metal and concrete waste. We are investigating decontamination methods for metals and concrete contaminated with uranium. (3) Development of technologies to remove, detoxify and fix the harmful substances. We are surveying the types and amounts of harmful substances in waste. In addition, we are investigating the method to remove, detoxify, and fix harmful substances. (4) Measurement technology of uranium radioactivity. We are investigating and examining ways to improve the quantitative accuracy of measurement and shorten the measurement time. (5) Development of uranium removal technology from sludge. We are investigating new processing method to remove uranium from sludge which is applicable for several kind of sludge. The results of these technological developments and environmental research will be reflected to "small-scale field test" and "disposal demonstration test" which are planned for demonstration of the uranium waste disposal technology.
Restoration Activity Team for the PFRF Contamination Incident
JAEA-Review 2019-001, 58 Pages, 2019/03
The contamination accident occurred in a laboratory room (Room No.108) of Plutonium Fuel Research Facility (PFRF) in Japan Atomic Energy Agency (JAEA), Oarai Research and Development Institute on June 6, 2017. The polyvinyl chloride (PVC) bags burst just after the lid of one storage container was opened during the inspection of storage containers for U and Pu in the ventilation hood. At that time, part of nuclear materials in the storage container were scattered all over the room. Five workers in the room were subjected to plutonium contamination, which resulted in internal exposure. In order to restore the Room No.108 of PFRF, the Restoration Activity Team organized in JAEA carried out the decontamination work after the investigation of the contamination level in the room. The team decontaminated the surface of walls, ceiling, gloveboxes and other experimental instruments. Depending on the contamination distribution and installation state of the instruments, suitable decontamination methods were selected. In addition to the manual wiping using wet clothes, the exfoliation method using a strippable paint was applied for constricted areas. As a result, the loose alpha-contamination level fell below the detection limit throughout the room. On the other hand, the fixed contamination was covered with plastic sheets after the decontamination by a strippable paint. We hope that the restoration activity described in this report will provide useful information for the management of decommissioning facilities, especially for facilities treating alpha-radioactive materials such as plutonium.
Miyahara, Kaname; Kawase, Keiichi
Genshiryoku No Ima To Ashita, p.159 - 167, 2019/03
This manuscript overviews lessons learned from decontamination pilot projects towards implementation of regional remediation after the environmental contamination due to the Fukushima Daiichi Nuclear Power Plant Accidents.
Yamada, Kazuo*; Maruyama, Ippei*; Koma, Yoshikazu; Haga, Kazuko*; Igarashi, Go*; Shibuya, Kazutoshi*; Aihara, Haruka
Proceedings of International Waste Management Symposia 2019 (WM2019) (CD-ROM), 6 Pages, 2019/03
Malins, A.; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko
Remediation Measures for Radioactively Contaminated Areas, p.259 - 272, 2019/00
Takeda, Seiji
Strlevern Rappot 2018:4 (Internet), p.62 - 64, 2018/04
The widespread environment was contaminated by radioactive cesium discharged by the severe accident of the Fukushima Daiichi Nuclear Power Station. Decontamination measures have been implemented extensively, resulting in the generation of large volume of decontamination soil that has been placed in temporary storage. To reduce the volume of decontamination soil, it can be effective to recycle the soil as construction material. This report shows the concept of safety assessment method for recycle to public projects in which the management system and allocation of responsibility are clarified, scenario construction and parameter selection, and also the results of safe assessment for the recycle to coastal levees.
Shobu, Nobuhiro
Enerugi Rebyu, 37(10), p.21 - 22, 2017/10
After the Fukushima-Daiichi Nuclear Power Plant Accident, Japan Atomic Energy Agency (JAEA) has been carrying out research and development activities towards the environmental restoration of Fukushima. This paper describes the following representative activities in Fukushima Environmental Safety Center of JAEA, such as the development of environmental monitoring and mapping technologies, the long-term assessment of transport of radio-cesium in the environment of Fukushima, and the technology development for advancing decontamination and volume reduction technologies.
Kawase, Keiichi
Global Environmental Research (Internet), 20(1&2), p.83 - 90, 2017/03
Major challenges to implementing full-scale environmental decontamination were the absence of real-world examples and also lack of experience in planning and implementing decontamination technology appropriate to the physical and social boundary conditions in both Japan and Fukushima. The Japan Atomic Energy Agency was thus charged with conducting a range of Decontamination Pilot Project to examine the applicability of decontamination technologies, with a special focus on reducing dose rates and thus allowing evacuees to return to re-establish their normal lifestyles as quickly as possible, whilst simultaneously maintaining worker safety. In this report, re-edit the report of the Decontamination Pilot Project (Nakayama et al.,2014), do the commentary for the decontamination technology.