Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 66

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2020 fiscal year

Nakayama, Masashi

JAEA-Review 2021-053, 133 Pages, 2022/02

JAEA-Review-2021-053.pdf:14.45MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA). The main aim of this project is to enhance the reliability of relevant disposal technologies for geological disposal of high-level radioactive waste through a comprehensive research and development (R&D) program in the deep geological environment within the host sedimentary rock at Horonobe in Hokkaido, north Japan. In fiscal year 2020, JAEA continued R&D on three important issues specified in the "Horonobe Underground Research Plan from Fiscal Year 2020", which involve "Study on nearfield system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behavior of sedimentary rock to natural perturbations". Specifically, 'full scale engineered barrier system (EBS) experiment' and 'solute transport experiment' were carried out as part of "Study on near-field system performance in geological environment". 'Development and testing of EBS emplacement / retrieval and tunnel closure technologies' and 'evaluation of EBS behavior over 100$$^{circ}$$C' were addressed for "Demonstration of repository design options". A study on "Understanding of buffering behavior of sedimentary rock to natural perturbations" was also implemented in two areas, 'evaluation of hydromechanical responses of faults to water pressure changes' and 'development of techniques for evaluating self-sealing behavior of an excavation damaged zone after backfilling'. The results of the R&D, along with those obtained in other departments of JAEA, will reinforce the technical basis for both repository implementation and safety regulation. For the sake of this, JAEA will steadily proceed with this project in collaboration with relevant organizations and universities both domestically and internationally and also widely publish the plans and results of the R&D to ensure their transparency and technical reliability.

JAEA Reports

Analysis of risk reduction effect of supposed steam condenser implementation as accident measure for accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-013, 20 Pages, 2022/01

JAEA-Research-2021-013.pdf:2.35MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. An idea has been proposed to implement a steam condenser as an accident countermeasure. This measure is expected to prevent nitric acid steam diffusing in facility building and to increase gaseous Ru trapping ratio into condensed water. A simulation study has been carried out with a hypothetical typical facility building to analyze the efficiency of steam condenser. In this study, SCHERN computer code simulates chemical behaviors of Ru in nitrogen oxide, nitric acid and water mixed vapor based on the conditions obtained from simulation with thermal-hydraulic computer code MELCOR. The effectiveness of steam condenser has been analyzed quantitively in preventing mixed vapor diffusion and gaseous Ru trapping effect. Some issues to be solved in analytical model has been also clarified in this study.

JAEA Reports

Analysis of behavior of Ru with nitrogen oxide chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-005, 25 Pages, 2021/08

JAEA-Research-2021-005.pdf:2.91MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an empirical correlation equation of Ru mass transfer coefficient across the vapor-liquid surface, which can be useful for quantitative simulation of Ru mitigating behavior, has been obtained from data analyses of small-scale experiments conducted to clarify gaseous Ru migrating behavior under steam-condensing condition. A simulation study has been also carried out with a hypothetical typical facility building successfully to demonstrate the feasibility of quantitative estimation of amount of Ru migrating in the facility using the obtained correlation equation implemented in SCHERN computer code which simulates chemical behaviors of nitrogen oxide based on the condition also simulated thermal-hydraulic computer code.

JAEA Reports

SCHERN-V2: Technical guide of computer program for chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Data/Code 2021-008, 35 Pages, 2021/08

JAEA-Data-Code-2021-008.pdf:3.68MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NO$$_{rm x}$$) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NOx affects to the migration behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NO$$_{rm x}$$ with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. The analysis program, SCHERN has been under developed to simulate chemical behavior including Ru coupled with the thermo-hydraulic condition in the flow paths in the facility building. This technical guide for SCHERN-V2 presents the overview of covered accident, analytical models including newly developed models, differential equations for numerical solution, and user instructions.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2021 fiscal year

Nakayama, Masashi

JAEA-Review 2021-009, 54 Pages, 2021/07

JAEA-Review-2021-009.pdf:5.02MB

The Horonobe URL Project is being pursued by the JAEA to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. In 2021 fiscal year (2021/2022), JAEA continue to conduct research on "Demonstration of EBS in geological environment", "Demonstration of disposal concept", and "Validation of buffer capacity of the sedimentary rock to tectonism", which are the important issues shown in the Horonobe underground research plan after 2020 fiscal year. The main studies to be conducted in 2021 fiscal year are as follows. As "Demonstration of EBS in geological environment", we will shift to the test under the condition that the influence of heating is eliminated in the full scale EBS experiment. As "Demonstration of disposal concept", as a demonstration of the closure techniques, it details the conditions under which long-term transitions in the tunnel and surrounding bedrock have a significant impact on safety assessments. And we will continue engineering scale experiment to confirm the workability and performance of plugs and laboratory tests to examine the interaction between backfilling materials and buffer materials. As "Validation of buffer capacity of the sedimentary rock to tectonism", we will analyze the results of the hydraulic disturbance test and continue to study the hydraulic disconnection of faults/fissures in the Wakkanai Formation. As an advancement of technology for investigating and evaluating areas where the flow of groundwater is extremely slow, a boring exploration will be conducted to confirm the three-dimensional distribution of the fossil seawater area.

JAEA Reports

JAEA-TDB-RN in 2020; Update of JAEA's thermodynamic database for solubility and speciation of radionuclides for performance assessment of geological disposal of high-level and TRU wastes

Kitamura, Akira

JAEA-Data/Code 2020-020, 164 Pages, 2021/03

JAEA-Data-Code-2020-020.pdf:3.11MB
JAEA-Data-Code-2020-020-appendix(DVD-ROM).zip:0.56MB

Part of JAEA's Thermodynamic Database (JAEA-TDB) for solubility and speciation of radionuclides (JAEA-TDB-RN) for performance assessment of geological disposal of high-level radioactive and TRU wastes has been updated with subsuming the database for geochemical calculations (JAEA-TDB-GC). This report has focused to update JAEA-TDB-RN after selecting change in standard Gibbs free energy of formation ($$Delta_{rm f}$$$$G^{circ}_{rm m}$$), change in standard enthalpy change of formation ($$Delta$$$$H$$$$^{circ}$$$$_{rm m}$$), standard molar entropy ($$S^{circ}$$$$_{rm m}$$) and, heat capacity ($$C^{circ}_{rm p}$$), change in standard Gibbs free energy of reaction ($$Delta_{rm r}G^{circ}$$$$_{rm m}$$), change in standard enthalpy change of reaction ($$Delta$$$$_{rm r}$$$$H$$$$^{circ}$$$$_{rm m}$$) and standard entropy change of reaction ($$Delta_{rm r}S^{circ}_{rm m}$$) as well as logarithm of equilibrium constant (log$$_{10}$$$$K^{circ}$$) at standard state. The extent of selection of these thermodynamic data enables to evaluate solubility and speciation of radionuclides at temperatures other than 298.15 K. Furthermore, the latest thermodynamic data for iron which have been critically reviewed, selected and compiled by the Nuclear Energy Agency within Organisation for Economic Co-operation and Development (OECD/NEA) have been accepted. Most of previously selected log$$_{10}$$$$K^{circ}$$ have been refined to confirm internal consistency with JAEA-TDB-GC. Text files of the updated JAEA-TDB have been provided for geochemical calculation programs of PHREEQC and Geochemist's Workbench.

Journal Articles

Restraint effect of coexisting nitrite ion in simulated high level liquid waste on releasing volatile ruthenium under boiling condition

Yoshida, Ryoichiro; Amano, Yuki; Yoshida, Naoki; Abe, Hitoshi

Journal of Nuclear Science and Technology, 58(2), p.145 - 150, 2021/02

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In the "evaporation and dryness due to the loss of cooling functions" which is one of the severe accidents at reprocessing plants in Japan, ruthenium (Ru) is possible to be released much more than other elements to the environment. This cause is considered that the volatile Ru compound can be released from high level liquid waste (HLLW) as gaseous compound in adding to the release by entrainment. It was expected that the release of the volatile Ru compound from the HLLW may be able to be restrained by coexisting nitrite ion because of its reduction power. To confirm the effect of nitrite ion on the release behavior of the volatile Ru compound, four experiments of heating the simulated HLLW (SHLLW) with setting the concentration of nitrite ion in the SHLLW as a parameter ware carried out. As a result, the release of the volatile Ru compound was seemed to be restrained by adding nitrite sodium as a source of nitrite ion under certain boiling condition. This result may contribute to improve source term analysis in the evaporation and dryness due to the loss of cooling functions.

Journal Articles

Prediction of thermodynamic data for radium suitable for thermodynamic database for radioactive waste management using an electrostatic model and correlation with ionic radii among alkaline earth metals

Kitamura, Akira; Yoshida, Yasushi*

Journal of Radioanalytical and Nuclear Chemistry, 327(2), p.839 - 845, 2021/02

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

Thermodynamic data for radium for radioactive waste management have been predicted using an electrostatic model and correlation with the ionic radii of the alkaline earth metals. Estimation of the standard Gibbs free energy of formation and standard molar entropy of aqueous radium species and compounds has been based on such approaches as extrapolation of the thermodynamic properties of strontium and barium, and use of a model of ion pair formation. The predicted thermodynamic data for radium have been compared with previously reported values.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2019 fiscal year

Nakayama, Masashi; Saiga, Atsushi

JAEA-Review 2020-042, 116 Pages, 2021/01

JAEA-Review-2020-042.pdf:10.33MB

The Horonobe Underground Research Laboratory Project will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the results of the investigations for the 2019 fiscal year (2019/2020). The investigations, which are composed of "Geoscientific research" and "R and D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2019 fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organizations.

Journal Articles

Methodology development and determination of solubility-limiting solid phases for a performance assessment of geological disposal of high-level radioactive and TRU wastes

Kitamura, Akira; Yoshida, Yasushi*; Goto, Takahiro*; Shibutani, Sanae*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(2), p.58 - 71, 2020/12

Evaluation and estimation of solubility values are required for a performance assessment of geological disposal of high-level radioactive and TRU wastes. Selection of solubility-limiting solid phases (SSPs) that control the solubility of radionuclides is necessary for the evaluation and estimation of solubility values. The authors have developed a methodology for selection of the SSP through a calculation of saturation indices (SIs) using thermodynamic database to show a transparent procedure for the selection. Literature survey should be performed to confirm decision of the SSP from candidate SSPs which generally have larger SIs from realistic point of view for precipitation and solubility control. The authors have selected the SSPs for the elements of interest for the latest Japanese performance assessment in bentonite and cement porewaters after grouping various water compositions.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2020 fiscal year

Nakayama, Masashi; Saiga, Atsushi

JAEA-Review 2020-022, 34 Pages, 2020/11

JAEA-Review-2020-022.pdf:3.99MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Demonstration of EBS in geological environment", "Demonstration of disposal concept", and "Validation of buffer capacity of the sedimentary rock to tectonism" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the URL will be decided by the end of 2019 Fiscal Year. JAEA summarizes the research and development activities of the important issues carried out during the 3rd Mid- and Long-term Plan, and set out three important issues after 2020 fiscal year. After consultation with Hokkaido and Horonobe town, JAEA formulated the Horonobe underground research plan after 2020 fiscal year within the 3rd and 4th Mid- and Long-term Plan. This report summarizes the investigation program for the 2020 fiscal year (2020/2021).

JAEA Reports

Long term monitoring and evaluation of the excavation damaged zone induced around the wall of the shaft applying optical fiber sensor (Cooperative research)

Hata, Koji*; Niunoya, Sumio*; Uyama, Masao*; Nakaoka, Kenichi*; Fukaya, Masaaki*; Aoyagi, Kazuhei; Sakurai, Akitaka; Tanai, Kenji

JAEA-Research 2020-010, 142 Pages, 2020/11

JAEA-Research-2020-010.pdf:13.74MB
JAEA-Research-2020-010-appendix(DVD-ROM).zip:149.9MB

In the geological disposal study of high-level radioactive waste, it is suggested that the excavation damaged zone (EDZ) which is created around a tunnel by the excavation will be possible to be one of the critical path of radionuclides. Especially, the progress of cracks in and around the EDZ with time affects the safety assessment of geological disposal and it is important to understand the hydraulic change due to the progress of cracks in and around EDZ. In this collaborative research, monitoring tools made by Obayashi Corporation were installed at a total of 9 locations in the three boreholes near the depth of 370 m of East Shaft at the Horonobe Underground Research Laboratory constructed in the Neogene sedimentary rock. The monitoring tool consists of one set of "optical AE sensor" for measuring of the mechanical rock mass behavior and "optical pore water pressure sensor and optical temperature sensor" for measuring of groundwater behavior. This tool was made for the purpose of selecting and analyzing of AE signal waveforms due to rock fracture during and after excavation of the target deep shaft. As a result of analyzing various measurement data including AE signal waveforms, it is able to understand the information on short-term or long-term progress of cracks in and around EDZ during and after excavation in the deep shaft. In the future, it will be possible to carry out a study that contributes to the long-term stability evaluation of EDZ in sedimentary rocks in the deep part of the Horonobe Underground Research Laboratory by evaluation based on these analytical data.

JAEA Reports

Review and evaluation on the surface area of vitrified products of high-level waste; Surface area increase factors due to fracturing and their bases for the performance assessment of geological disposal

Igarashi, Hiroshi

JAEA-Review 2020-006, 261 Pages, 2020/09

JAEA-Review-2020-006.pdf:4.42MB

A literature review was conducted on the increase in surface area of vitrified products of HLW due to the fracturing caused by cooling during glass pouring process and by mechanical impact, from the perspective of a parameter of the radionuclide release model in the performance assessment of geological disposal system studied overseas. The review was focused on the value of surface area increase factor set as a parameter in the model, the experimental work to evaluate an increase in surface area, and how the parameters on surface area were determined based on the experimental results. The surface area obtained from the experiments executed in Japan was also discussed in comparison with the overseas studies. On the basis of the investigation, the effects of various conditions on the surface area were studied, such as a diameter of vitrified product, cooling condition during and after the glass pouring, impact on vitrified products during their handling, environment after the closure of disposal facility, and others. The causes of fracturing are associated with the phenomena or events in the waste management process such as production, transport, storage, and disposal. The surface area increase factors set in the nuclide release model of the glass and their bases were reviewed. In addition, the measured values and the experimental methods for surface increase factors published so far were compared. Accordingly, the methods for measuring surface area as the bases were identified for these factors set in the models. The causes of fracturing and features of these factors were studied with respect to the relation with the waste management process. The results from the review and assessment can contribute to the expanding the knowledge for the conservative and realistic application of these factors to performance assessment, and to the developing and upgrading of safety case as a consequence.

Journal Articles

Pressure resistance thickness of disposal containers for spent fuel direct disposal

Sugita, Yutaka; Taniguchi, Naoki; Makino, Hitoshi; Kanamaru, Shinichiro*; Okumura, Taisei*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 19(3), p.121 - 135, 2020/09

A series of structural analysis of disposal containers for direct disposal of spent fuel was carried out to provide preliminary estimates of the required pressure resistance thickness of the disposal container. Disposal containers were designed to contain either 2, 3 or 4 spent fuel assemblies in linear, triangular or square arrangements, respectively. The required pressure resistance thickness was evaluated using separation distance of the housing space for each spent fuel assembly as a key model parameter to obtain the required thickness of the body and then the lid of the disposal container. This work also provides additional analytical technical knowledge, such as the validity of the setting of the stress evaluation line and the effect of the model length on the analysis. These can then be referred to and used again in the future as a basis for conducting similar evaluations under different conditions or proceeding with more detailed evaluations.

JAEA Reports

Synthesis report on the R&D for the Horonobe Underground Research Laboratory; Project carried out during fiscal years 2015-2019

Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.

JAEA-Research 2019-013, 276 Pages, 2020/03

JAEA-Research-2019-013.pdf:18.72MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.

Journal Articles

Development of thermodynamic database for performance assessment of geological disposal of high-level radioactive waste and TRU waste

Kitamura, Akira

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(1), p.23 - 28, 2020/01

Thermodynamic databases (TDBs) for performance assessment of geological disposal of high-level waste and TRU waste have been developed to predict solubility and speciation of radionuclides in groundwater in some countries including Japan. The present manuscript briefly describes current status of development of the TDB organized by the Nuclear Energy Agency within the Organisation of Economic Co-operation and Development (OECD/NEA) and the TDBs in some countries including Japan.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2019 fiscal year

Aoyagi, Kazuhei

JAEA-Review 2019-008, 20 Pages, 2019/07

JAEA-Review-2019-008.pdf:3.33MB

As part of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are the top priority issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The Horonobe URL Project is planned to extend over a period of about 20 years. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the investigation program for the 2019 fiscal year (2019/2020). In the 2019 fiscal year, investigations in "geoscientific research", including "development of techniques for investigating the geological environment", "development of engineering techniques for use in the deep underground environment" and "studies on the long-term stability of the geological environment", are continuously carried out. Investigations in "research and development on geological disposal technology", including "improving the reliability of disposal technologies" and "enhancement of safety assessment methodologies", are also continuously carried out.

JAEA Reports

SCHERN: Analysis program for chemical behavior of nitrogen oxide in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Hiyama, Mina*; Tamaki, Hitoshi; Yoshida, Kazuo

JAEA-Data/Code 2019-006, 17 Pages, 2019/07

JAEA-Data-Code-2019-006.pdf:1.84MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NOx) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NOx affects strongly to the transport behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NOx with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. An analysis program has been developed to simulate chemical reaction coupled with the thermo-hydraulic condition in the flow paths in the facility building.

Journal Articles

Analysis of chemical behavior of nitrogen oxide formed by thermal decomposition of FP nitrates in accident of evaporation to dryness by boiling of reprocessed high-level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Yoshida, Naoki; Yoshida, Ryoichiro; Amano, Yuki; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(2), p.69 - 80, 2019/06

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that nitrogen oxide affects strongly to the transport behavior of Ru. Chemical reactions of nitrogen oxide with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. An analysis method has been developed with coupling two types of computer codes to simulate not only thermo-hydraulic behavior but also chemical reactions in the flow paths of carrier gases. A simulation study has been also carried out with a typical facility building.

JAEA Reports

Update of JAEA-TDB; Update of thermodynamic data for zirconium and those for isosaccahrinate, tentative selection of thermodynamic data for ternary M$$^{2+}$$-UO$$_{2}$$$$^{2+}$$-CO$$_{3}$$$$^{2-}$$ system and integration with JAEA's thermodynamic database for geochemical calculations

Kitamura, Akira

JAEA-Data/Code 2018-018, 103 Pages, 2019/03

JAEA-Data-Code-2018-018.pdf:5.66MB
JAEA-Data-Code-2018-018-appendix1(DVD-ROM).zip:0.14MB
JAEA-Data-Code-2018-018-appendix2(DVD-ROM).zip:0.15MB
JAEA-Data-Code-2018-018-appendix3(DVD-ROM).zip:0.19MB

The latest available thermodynamic data were critically reviewed and the selected values were included into the JAEA-TDB for performance assessment of geological disposal of high-level radioactive and TRU wastes. This critical review specifically addressed thermodynamic data for (1) a zirconium-hydroxide system through comparison of thermodynamic data selected by the Nuclear Energy Agency within the Organisation for Economic Co-operation and Development (OECD/NEA), (2) complexation of metal ions with isosaccharinic acid based on the latest review papers. Furthermore, the author performed (3) tentative selection of thermodynamic data on ternary complexes among alkaline-earth metal, uranyl and carbonate ions, and (4) integration with the latest version of JAEA's thermodynamic database for geochemical calculations. The internal consistency of the selected data was checked by the author. Text files of the updated and integrated thermodynamic database have been prepared for geochemical calculation programs of PHREEQC and Geochemist's Workbench.

66 (Records 1-20 displayed on this page)