Refine your search:     
Report No.
 - 
Search Results: Records 1-14 displayed on this page of 14
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2021 fiscal year

Nakayama, Masashi

JAEA-Review 2021-009, 54 Pages, 2021/07

JAEA-Review-2021-009.pdf:5.02MB

The Horonobe URL Project is being pursued by the JAEA to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. In 2021 fiscal year (2021/2022), JAEA continue to conduct research on "Demonstration of EBS in geological environment", "Demonstration of disposal concept", and "Validation of buffer capacity of the sedimentary rock to tectonism", which are the important issues shown in the Horonobe underground research plan after 2020 fiscal year. The main studies to be conducted in 2021 fiscal year are as follows. As "Demonstration of EBS in geological environment", we will shift to the test under the condition that the influence of heating is eliminated in the full scale EBS experiment. As "Demonstration of disposal concept", as a demonstration of the closure techniques, it details the conditions under which long-term transitions in the tunnel and surrounding bedrock have a significant impact on safety assessments. And we will continue engineering scale experiment to confirm the workability and performance of plugs and laboratory tests to examine the interaction between backfilling materials and buffer materials. As "Validation of buffer capacity of the sedimentary rock to tectonism", we will analyze the results of the hydraulic disturbance test and continue to study the hydraulic disconnection of faults/fissures in the Wakkanai Formation. As an advancement of technology for investigating and evaluating areas where the flow of groundwater is extremely slow, a boring exploration will be conducted to confirm the three-dimensional distribution of the fossil seawater area.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2019 fiscal year

Nakayama, Masashi; Saiga, Atsushi

JAEA-Review 2020-042, 116 Pages, 2021/01

JAEA-Review-2020-042.pdf:10.33MB

The Horonobe Underground Research Laboratory Project will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the results of the investigations for the 2019 fiscal year (2019/2020). The investigations, which are composed of "Geoscientific research" and "R and D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2019 fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organizations.

JAEA Reports

Backfill material characteristics using the bentonite/excavated rock mixture in the Horonobe Underground Research Laboratory Project (Contract research)

Sugita, Yutaka; Kikuchi, Hirohito*; Hoshino, Emiko*

JAEA-Data/Code 2020-017, 39 Pages, 2021/01

JAEA-Data-Code-2020-017.pdf:2.96MB

In Japan, high-level radioactive waste (HLW) will be buried in a purpose built repository in deep underground. In the vertical disposal concept of HLW, nuclear waste canisters will be emplaced in excavated vertical disposal holes, surrounded by bentonite/sand mixture. And the galleries will be backfilled with bentonite/excavated rock mixture, which will be isolated with a concrete plug. Japan Atomic Energy Agency has performed swelling test, permeability test, thermal property measurement, uniaxial compression test, water potential measurement and infiltration tests to identify coupled thermal-hydraulic-mechanical-chemical behavior that will operate in the backfill material using excavated rock in the Horonobe Underground Research Laboratory (URL). The obtained data will be used to support an ongoing full scale, in-situ experiment being conducted in the Horonobe URL.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2020 fiscal year

Nakayama, Masashi; Saiga, Atsushi

JAEA-Review 2020-022, 34 Pages, 2020/11

JAEA-Review-2020-022.pdf:3.99MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Demonstration of EBS in geological environment", "Demonstration of disposal concept", and "Validation of buffer capacity of the sedimentary rock to tectonism" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the URL will be decided by the end of 2019 Fiscal Year. JAEA summarizes the research and development activities of the important issues carried out during the 3rd Mid- and Long-term Plan, and set out three important issues after 2020 fiscal year. After consultation with Hokkaido and Horonobe town, JAEA formulated the Horonobe underground research plan after 2020 fiscal year within the 3rd and 4th Mid- and Long-term Plan. This report summarizes the investigation program for the 2020 fiscal year (2020/2021).

JAEA Reports

Synthesis report on the R&D for the Horonobe Underground Research Laboratory; Project carried out during fiscal years 2015-2019

Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.

JAEA-Research 2019-013, 276 Pages, 2020/03

JAEA-Research-2019-013.pdf:18.72MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation program for the 2019 fiscal year

Aoyagi, Kazuhei

JAEA-Review 2019-008, 20 Pages, 2019/07

JAEA-Review-2019-008.pdf:3.33MB

As part of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are the top priority issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The Horonobe URL Project is planned to extend over a period of about 20 years. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the investigation program for the 2019 fiscal year (2019/2020). In the 2019 fiscal year, investigations in "geoscientific research", including "development of techniques for investigating the geological environment", "development of engineering techniques for use in the deep underground environment" and "studies on the long-term stability of the geological environment", are continuously carried out. Investigations in "research and development on geological disposal technology", including "improving the reliability of disposal technologies" and "enhancement of safety assessment methodologies", are also continuously carried out.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2017 fiscal year

Hanamuro, Takahiro; Saiga, Atsushi

JAEA-Review 2018-027, 125 Pages, 2019/02

JAEA-Review-2018-027.pdf:21.79MB

The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the results of the investigations for the 2017 fiscal year (2017/2018). The investigations, which are composed of "Geoscientific research" and "R&D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2017 fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organizations.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2014 (Joint research)

Kobayashi, Masato*; Saito, Masahiko*; Iwatani, Takafumi*; Nakayama, Masashi; Tanai, Kenji; Fujita, Tomo; Asano, Hidekazu*

JAEA-Research 2015-018, 14 Pages, 2015/12

JAEA-Research-2015-018.pdf:5.43MB

JAEA and RWMC concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work based on the agreement. JAEA have been carrying out the Horonobe URL Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, The Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry has been promoting construction of equipments for the full-scale demonstration of engineered barrier system and operation technology for high-level radioactive waste disposal since 2008, to enhance public's understanding to the geological disposal of HLW, e.g. using underground facility. RWMC received an order of the project in fiscal year 2014 continuing since fiscal year 2008. Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing since fiscal year 2008. This report summarizes the results of the research on engineering technology carried out in this collaboration work in fiscal year 2014.

JAEA Reports

Research on engineering technology in the full-scale demonstration of EBS and operation technology for HLW disposal; Research report in 2013 (Joint research)

Fujita, Tomo; Tanai, Kenji; Nakayama, Masashi; Sawada, Sumiyuki*; Asano, Hidekazu*; Saito, Masahiko*; Yoshino, Osamu*; Kobayashi, Masato*

JAEA-Research 2014-031, 44 Pages, 2015/03

JAEA-Research-2014-031.pdf:16.11MB

Japan Atomic Energy Agency (JAEA) and Radioactive Waste Management Funding and Research Center (RWMC) concluded the letter of cooperation agreement on the research and development of radioactive waste disposal in April, 2005, and have been carrying out the collaboration work based on the agreement. JAEA have been carrying out the Horonobe Underground Research Laboratory (URL) Project which is intended for a sedimentary rock in the Horonobe town, Hokkaido, since 2001. In the project, geoscientific research and research and development on geological disposal technology are being promoted. Meanwhile, the government (the Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry) has been promoting construction of equipments for the full-scale demonstration of engineered barrier system (EBS) and operation technology for high-level radioactive waste (HLW) disposal since 2008, to enhance public's understanding to the geological disposal of HLW, e.g. using underground facility. RWMC received an order of the project in fiscal year 2012 (2011/2012) continuing since fiscal year 2008 (2008/2009). Since topics in this project are included in the Horonobe URL Project, JAEA carried out this project as collaboration work continuing since fiscal year 2008. This report summarizes the results of engineering technology carried out in this collaboration work in fiscal year 2013. In fiscal year 2013, emplacement tests using buffer material block for the vertical emplacement concept were carried out and visualization tests for water penetration in buffer material were carried out.

JAEA Reports

Horonobe Underground Research Laboratory Project; Investigation report for the 2013 fiscal year

Hanamuro, Takahiro

JAEA-Review 2014-039, 69 Pages, 2014/10

JAEA-Review-2014-039.pdf:43.66MB

The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely "Phase 1: Surface-based investigations", "Phase 2: Construction Phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). This report summarizes the results of the investigations for the 2013 fiscal year (2013/2014). The investigations, which are composed of "Geoscientific research" and "R&D on geological disposal technology", were carried out according to "Horonobe Underground Research Laboratory Project Investigation Program for the 2013 fiscal year". The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations.

Oral presentation

The In-situ experiment for verification of performance of engineered barrier system in Horonobe Underground Research Laboratory, 7; Development drilling machine for large-diameter disposal pit

Niunoya, Sumio*; Shimohara, Masahiro*; Jo, Mayumi*; Nago, Makito*; Nakayama, Masashi; Tanai, Kenji; Hashimoto, Yuta; Nejigane, Nobuto

no journal, , 

no abstracts in English

Oral presentation

The In-situ experiment for verification of performance of engineered barrier system in Horonobe Underground Research Laboratory, 8; Plan of measurement for buffer material

Shirase, Mitsuyasu*; Jo, Mayumi*; Motoshima, Takayuki*; Niunoya, Sumio*; Nakayama, Masashi; Tanai, Kenji

no journal, , 

no abstracts in English

Oral presentation

Current status of the in-situ experiment for verification of performance of engineered barrier system in Horonobe Underground Research Laboratory

Nakayama, Masashi; Ono, Hirokazu; Shirase, Mitsuyasu*; Niunoya, Sumio*

no journal, , 

Japan Atomic Energy Agency is conducting the in-situ experiment for verification of performance of engineered barrier system in Horonobe Underground Research Laboratory. The purpose of this paper is reporting the current status of the experiment. This paper also reports the results of saturation status of buffer material blocks.

Oral presentation

Study of the effect on surrounding rock and groundwater from shotcrete using low alkaline cement in Horonobe URL

Nakayama, Masashi; Okamoto, Reiko*; Shirase, Mitsuyasu*

no journal, , 

In Japan, high-level radioactive waste repository will be constructed in a stable host rock formation more than 300m underground. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. JAEA has developed a low alkaline cement, named as HFSC (Highly fly-ash contained silicafume cement), containing over 60wt% of silica-fume and coal ash. HFSC was used experimentally as the shotcrete material in construction of part of the 140m, 250m and 350m deep gallery in Horonobe URL. JAEA has been carrying out the investigation about interaction among cement, rock and groundwater using core samples of shotcrete and rock. In this report, the effect on surrounding rock and groundwater from shotcrete using HFSC is described through comparison with that from shotcrete using OPC.

14 (Records 1-14 displayed on this page)
  • 1