Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 88

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Current status and future prospects of the Horonobe International Project (HIP), 4; Task C: Full-scale Engineering Barrier System (EBS) dismantling experiment

Ono, Hirokazu

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 31(2), p.140 - 143, 2024/12

In the geological disposal of high-level radioactive waste, after emplacement of an EBS, the near-field environment is affected by processes such as heat release from the waste, groundwater infiltration into the EBS, swelling and deformation of the buffer material, and chemical reactions between groundwater and minerals. It is crucial to develop simulation codes to evaluate such coupled thermal-hydraulic-stress-chemical (THMC) processes for safety assessment of geological disposal. The full-scale vertical-emplacement EBS experiment (Horonobe EBS experiment) has been undertaken in the 350 m gallery of the Horonobe Underground Research Laboratory (URL) with the Horonobe geological environment. In the Horonobe EBS experiment, various sensors were installed in the buffer and backfill material to obtain the data required to evaluate coupled THMC processes in near-field. In Task C of the Horonobe International Project (HIP), the dismantling experiment of the Horonobe EBS experiment will be carried out and the data obtained from this experiment will be used to understand the coupled processes and to evaluate the simulation code.

JAEA Reports

Horonobe Underground Research Laboratory Project Investigation Report for the 2023 Fiscal Year

Nakayama, Masashi

JAEA-Review 2024-042, 111 Pages, 2024/11

JAEA-Review-2024-042.pdf:7.83MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant technologies for geological disposal of high-level radioactive waste through investigating the deep geological environment within the host sedimentary rocks at Horonobe Town in Hokkaido, north Japan. In the fiscal year 2023, we continued R&D on "Study on near-field system performance in geological environment", "Demonstration of repository design options", and "Understanding of buffering behaviour of sedimentary rock to natural perturbations". These are identified as key R&D on challenges to be tackled in the Horonobe underground research plan for the fiscal year 2020 onwards. Specifically, "full-scale engineered barrier system (EBS) performance experiment" and "solute transport experiment with model testing" were carried out as part of "Study on nearfield system performance in geological environment". "Demonstration of engineering feasibility of repository technology" and "evaluation of EBS behaviour over 100$$^{circ}$$C" were addressed for "Demonstration of repository design options". The validation of a method for assessing permeability using the Ductility Index and a method for estimating the state of in-situ ground pressure from hydraulic perturbation tests were investigated as part of the study "Understanding of buffering behaviour of sedimentary rock to natural perturbations". In FY2023, we resumed construction of the subsurface facilities, 3 new tunnels in the 350 m gallery and resumed excavation of the East Access Shaft and the Ventilation Shaft. By the end of FY2023, the 350 m gallery extension (tunnel extension 66 m) had been completed, and the depths of the East Access Shaft and Ventilation Shaft were GL-424 m and GL-393 m respectively.

Journal Articles

Transmissivity prediction of the Excavation Damaged Zone fracture around the gallery at 500 m at the Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Ozaki, Yusuke; Tamura, Tomonori; Ishii, Eiichi

Proceedings of 4th International Conference on Coupled Processes in Fractured Geological Media; Observation, Modeling, and Application (CouFrac2024) (Internet), 10 Pages, 2024/11

In high-level radioactive waste disposal, it is crucial to estimate the transmissivity of gallery excavation-induced fractures, i.e., excavation damaged zone (EDZ) fractures, because EDZ fractures can be a radionuclide migration pathway after the backfilling of the facility is completed. From previous research, the transmissivity of the fracture can be estimated through the empirical equation using the parameter ductility index (DI), which corresponds to the effective mean stress normalized to the tensile strength of the rock. In this research, we performed a hydromechanical coupling analysis of a gallery excavation at the Horonobe Underground Research Laboratory to estimate the transmissivity of the EDZ fracture before the excavation. At first, we simulated the gallery excavation at 350 m and showed that the measured transmissivity was within the range of the estimated transmissivity using the DI. After that, we also predicted the excavation of a gallery at 500 m by setting the hydromechanical parameters acquired from the laboratory tests before the excavation. The estimated transmissivity at 500 m was one order of magnitude less than that at 350 m. This result might be related to the closure of the fracture under high-stress conditions and low rock strength.

JAEA Reports

Fuel debris criticality analysis technology using non-contact measurement method (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2024-013, 48 Pages, 2024/07

JAEA-Review-2024-013.pdf:1.99MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2022. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology, National Institute of Advanced Industrial Science and Technology, and Nagaoka University of Technology as the second year of three years research project.

JAEA Reports

Proceedings of the 12th International Conference on Nuclear Criticality Safety (ICNC2023); October 1-6, 2023, Sendai International Center, Sendai, Miyagi, Japan

Suyama, Kenya; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Shimada, Kazuya; Fujita, Tatsuya; Ueki, Taro; Nguyen, H.

JAEA-Conf 2024-001, 40 Pages, 2024/07

JAEA-Conf-2024-001.pdf:1.28MB
JAEA-Conf-2024-001-appendix(CD-ROM).zip:163.97MB

The 12th International Conference on Nuclear Criticality Safety (ICNC2023) was held from October 1 to October 6, 2023, at the Sendai International Center (Aobayama, Aoba-ku, Sendai, Miyagi-prefecture 980-0856, Japan), organized by Japan Atomic Energy Agency (JAEA) and co-organized by the Reactor Physics Division of the Atomic Energy Society of Japan (AESJ) and the Nuclear Energy Agency of the Organization for Economic Co-operation and Development (OECD/NEA). 224 presentations passed peer review and 273 technical session registrations, bringing the total number of registered participants to 289, including accompanying persons. Technical tours were also conducted to i) Fukushima Daiichi Nuclear Power Station of TEPCO holdings and Interim Storage Facility Information Center, ii) Nuclear Science Research Institute of JAEA (STACY Renewable Reactor and FCA), iii) NanoTerasu of Tohoku University (synchrotron radiation facility) and Onagawa Nuclear Power Station of Tohoku Electric Power Co., Inc. This report summarizes the conference and compiles the papers that were presented and agreed to be published in the Proceedings.

Journal Articles

JAEA Reports

Fuel debris criticality analysis technology using non-contact measurement method (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-043, 52 Pages, 2023/01

JAEA-Review-2022-043.pdf:3.48MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2021. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology (Tokyo Tech), National Institute of Advanced Industrial Science and Technology (AIST), and National Research Nuclear University (MEPhI) as the first year of four years research project. For the criticality characteristic measurement systems to be developed by the Japanese and Russian sides, …

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-037, 61 Pages, 2022/01

JAEA-Review-2021-037.pdf:4.24MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of critical safety technology in fuel debris retrieval" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The purpose of research was to improve the criticality safety analysis methods in the case of fuel debris removal with the collaboration with Russian university, which has a lot of experiences in the criticality analysis. This research has been performed as two fiscal years project in FY 2019 and FY 2020 by Tokyo Institute of Technology (Tokyo Tech) and Tokyo City University (TCU) as the Japanese side, and National Research Nuclear University MEPhI as the Russian side.

JAEA Reports

Effective dose coefficients for internal exposure dose assessment in accordance with ICRP 2007 recommendations (Contract research)

Takahashi, Fumiaki; Manabe, Kentaro; Sato, Kaoru

JAEA-Review 2020-068, 114 Pages, 2021/03

JAEA-Review-2020-068.pdf:2.61MB

Radiation safety regulations have been currently established based on the 1990Recommendation by the International Commission on Radiological Protection (ICRP) in Japan. Meanwhile, ICRP released the 2007 Recommendation that replaces the 1990 Recommendation. Thus, the Radiation Council, which is established under the Nuclear Regulation Authority (NRA), has made discussions to incorporate the purpose of the 2007 Recommendation into Japanese regulations for radiation safety. As ICRP also has published effective dose coefficients for internal exposure assessment in accordance with the 2007recommendation, the technical standards are to be revised for the internal exposure assessment method in Japan. Currently, not all of the effective doses have been published to revise concentration limits for internal exposure protections of workers and public. The published effective dose coefficients are applied to radionuclides which are important in radiation protection for internal exposure of a worker. Thus, we review new effective dose coefficients as well as basic dosimetry models and data based upon Occupational Intakes of Radionuclides (OIR) parts 2, 3 and 4 that have been published from 2016 to 2019 by ICRP. In addition, issues are sorted out to provide information for revision of the technical standards for internal exposure assessment based on the 2007 Recommendations in future.

JAEA Reports

Outline of Regional Workshops held in 2006 - 2017 by the International Atomic Energy Agency in the proposal of Nuclear Emergency Preparedness Group of the Asian Nuclear Safety Network

Okuno, Hiroshi; Yamamoto, Kazuya

JAEA-Review 2020-066, 32 Pages, 2021/02

JAEA-Review-2020-066.pdf:3.01MB

The International Atomic Energy Agency (abbreviated as IAEA) has been implementing the Asian Nuclear Safety Network (abbreviated as ANSN) activities since 2002. As part of this effort, Topical Group on Emergency Preparedness and Response (abbreviated as EPRTG) for nuclear or radiation disasters was established in 2006 under the umbrella of the ANSN. Based on the EPRTG proposal, the IAEA conducted 23 Asian regional workshops in the 12 years from 2006 to 2017. Typical topical fields of the regional workshops were nuclear emergency drills, emergency medical care, long-term response after nuclear/radiological emergency, international cooperation, national nuclear disaster prevention system. The Japan Atomic Energy Agency has produced coordinators for EPRTG since its establishment and has led its activities since then. This report summarizes the Asian regional workshops conducted by the IAEA based on the recommendations of the EPRTG.

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-041, 30 Pages, 2020/12

JAEA-Review-2020-041.pdf:1.9MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of Critical Safety Technology in Fuel Debris Retrieval" conducted in FY2019.

JAEA Reports

Registration and related activities of the Japan Atomic Energy Agency for the response and assistance network of the International Atomic Energy Agency

Togawa, Orihiko; Hayakawa, Tsuyoshi; Tanaka, Tadao; Yamamoto, Kazuya; Okuno, Hiroshi

JAEA-Review 2020-017, 36 Pages, 2020/09

JAEA-Review-2020-017.pdf:2.24MB

In 2010, the government of Japan joined the Response and Assistance Network (RANET) of the International Atomic Energy Agency (IAEA), in order to contribute to offering international assistance in the case of a nuclear accident or radiological emergency. At that occasion, the Japan Atomic Energy Agency (JAEA) was registered as the National Assistance Capability (NAC) having resources capable of the External Based Support (EBS) in the following seven areas: (1) aerial survey, (2) radiation monitoring, (3) environmental measurements, (4) assessment and advice, (5) internal dose assessment, (6) bioassay and (7) dose reconstruction. After the registration, three inquiries were directed to the JAEA about a possibility of its support. However, the JAEA's assistance has not eventually been realized. On the other hand, the JAEA participated almost every year in the international Convention Exercise (ConvEx) carried out by the IAEA in connection with RANET. This report describes an outline of the RANET and related activities of the JAEA for RANET registration and participation in the ConvEx.

Journal Articles

GIF risk and safety working group; Application of the ISAM methodology to Gen-IV nuclear systems

Okano, Yasushi; Ammirabile, L.*; Sofu, T.*

2018 GIF Symposium Proceedings (Internet), p.253 - 262, 2020/05

GIF ISAM (Integrated Safety Assessment Methodology) includes five analytical tools (i.e. QSR, PIRT, OPT, DPA, PSA) and it is intended that each tool be used to answer specific safety-related questions with different levels of detail during various design stages and the ISAM as a whole offers flexibility and a graded approach to analyse technical issues of complex system architectures. Although each tool can be selected for individual and exclusive use, the full value of the integrated methodology is derived from using all tools, in an iterative fashion and in combination with the others, throughout the design process. The paper describes what is ISAM and pilot examples of individual use of QSR, PIRT and OPT and also combination application of DPA-PSA.

JAEA Reports

Memoirs; The Energy Technology Data Exchange (ETDE) for Japan

Kunii, Katsuhiko; Itabashi, Keizo; Yonezawa, Minoru

JAEA-Review 2019-002, 237 Pages, 2019/03

JAEA-Review-2019-002.pdf:8.2MB

From 1987 to 2014, the Energy Technology Data Exchange (ETDE) Program under the auspices of the International Energy Agency (IEA) had been carried out successfully with fruitful outcomes. ETDE had been able to be an excellent database for use in the general field of application of energy, including nuclear energy. ETDE could have deserved it, by extensively collecting the literature and providing the metadata worldwide, as well as by delivering and disseminating the bibliographic data, first to member countries, next additionally to the developing countries free of charge and finally all the world through the Internet free of charge as well. During all the days of ETDE Program Then ETDE had been very close and strong ties and cooperation with the International Nuclear Information System (INIS) Program under the auspices of the International Atomic Energy Agency (IAEA), e.g., by sharing and complementing many elements and parts of each database mutually. A portal site, the ETDE World Energy Base (ETDEWEB), for the database of ETDE, had been available for use to deliver and disseminate the valuable information of bibliography of ETDE, containing directions to the full text data, dedicated to satisfying the interest of end users worldwide. As of today, even if the addition of bibliographic data to ETDE has ceased since 2014, ETDEWEB itself has been available as before, maintained in great help of the Office of Scientific and Technical Information (OSTI) of the Department of Energy (DOE), US, while OSTI had been praised as the Operating Agent (OA) of ETDE Program from the commencement to the ceasing. This is a report containing several historical documents in regard with the ETDE activities worldwide kept and remained in Japan as records (minutes etc) at the side of JAERI.

JAEA Reports

Japan - IAEA Joint Nuclear Energy Management School 2016

Yamaguchi, Mika; Hidaka, Akihide; Ikuta, Yuko; Murakami, Kenta*; Tomita, Akira*; Hirose, Hiroya*; Watanebe, Masanori*; Ueda, Kinichi*; Namaizawa, Ken*; Onose, Takatoshi*; et al.

JAEA-Review 2017-002, 60 Pages, 2017/03

JAEA-Review-2017-002.pdf:9.41MB

Since 2010, IAEA has held the NEM School to develop future leaders who plan and manage nuclear energy utilization in their county. Since 2012, JAEA together with Japan Nuclear HRD Network, University of Tokyo, Japan Atomic Industrial Forum and JAIF International Cooperation Center have cohosted the school in Japan in cooperation with IAEA. Since then, the school has been held in Japan every year. In 2006, Japanese nuclear technology and experience, such as lessons learned from the Fukushima Daiichi Nuclear Power Plant accident, were provided to offer a unique opportunity for the participants to learn about particular cases in Japan. Through the school, we contributed to the internationalization of Japanese young nuclear professionals, development of nuclear human resource of other countries including nuclear newcomers, and enhanced cooperative relationship with IAEA. Additionally, collaborative relationship within the network was strengthened by organizing the school in Japan.

JAEA Reports

The Advisory Committee of International Nuclear Information System (INIS) for Japan

Kunii, Katsuhiko; Itabashi, Keizo

JAEA-Review 2016-021, 130 Pages, 2016/10

JAEA-Review-2016-021.pdf:2.2MB

Under the International Atomic Energy Agency (IAEA), the International Nuclear Information System (INIS) Programme commenced in 1970 and ever since INIS has been acting as a database system available worldwide through information networks each time providing bibliographic information then full text documents of literature, technical reports, etc. on peaceful use of nuclear science and technology, thoroughly supported and maintained by INIS Secretariat in Vienna, on the other hand the inputs for INIS are provided by Member States and Organizations in their own boundaries. As for the INIS activity in Japan, while, the Japan Atomic Energy Research Institute (JAERI), then succeeded as the Japan Atomic Energy Agency (JAEA) as of today, the both have been responsible with the INIS activity in Japan as the INIS National Centre for Japan based on the request of the "former" Science and Technology Agency of the Japanese Government, an advisory committee had have a very important role for the INIS activity in Japan by enthusiastically advising the whole related to the activity from advanced and comprehensive viewpoints of expertise. This report describes about it, the Advisory Committee of International Nuclear Information System (INIS) for Japan, successfully been held 34 times from Oct. 1970 to Mar 2005. Included are the history and its records, change of the member and topics of the Advisory Committee, and the minutes.

Journal Articles

JAEA's contribution for R&D and human resource development on implementing IAEA safeguards

Naoi, Yosuke; Oda, Tetsuzo; Tomikawa, Hirofumi

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 58(9), p.536 - 541, 2016/09

Japan has been promoting nuclear energy research and development, and the use of nuclear energy for only peaceful purposes in accordance with Atomic Energy Basic Acts enacted in 1955. In order to ensure limited to their peaceful utilization, it has been performing a nuclear material accountancy and reporting it based on bilateral nuclear agreement (Japan and the United States, Japan and France, Japan and Canada and so on) before concluding the comprehensive safeguards agreement with the IAEA. After the conclusion of that in 1977, the Japanese national law had been revised. The nuclear material accountancy and its reports to the IAEA have been implemented based on the revised law. In 1999, Japan ratified the additional protocol. Then it has been responding a new obligation in the additional protocol. The correctness and completeness of the declaration of nuclear activities in Japan have been verified by the IAEA, and then the "broader conclusion" was given to Japan in 2004. There indicates no diversion or undeclared nuclear activities in Japan. Since then Japan has been obtaining the "broader conclusion" every year. In this report we will report the JAEA's contribution to the IAEA safeguards on technical research and development and human resource development.

Journal Articles

Japanese research activities for Fukushima-Daiichi decommissioning

Okamoto, Koji; Ogawa, Toru

Proceedings of 2016 EFCOG Nuclear & Facility Safety Workshop (Internet), 3 Pages, 2016/09

The decommissioning of the Fukushima-Daiichi Nuclear Power Plant has required and will continue to demand conducting many challenging activities, many of which do not have prior experience in the nuclear industry. International decommissioning knowledge and technology advances will be required to support the challenging work. The Collaborative Laboratories for Advanced Decommissioning Science (CLADS) was established by the Japan Atomic Energy Agency (JAEA) in April 2015. The main objectives of CLADS are the management, research and development for decommissioning at the Fukushima-Daiichi site. Not only is the coordination of research and development important to effective decommissioning, but also the management of research activities around the world. A status of the CLADS program will be provided. The CLADS central research office will be located at Tomioka Town, near the Fukushima site, in April 2017.

Journal Articles

Operational quantities and new approach by ICRU

Endo, Akira

Annals of the ICRP, 45(1_suppl.), p.178 - 187, 2016/06

The protection quantities, equivalent dose in an organ or tissue and effective dose, were developed by ICRP to allow quantification of the extent of exposure of the human body to ionizing radiation to be used for the implementation of the limitation and optimization principles. The body-related protection quantities are not measurable in practice. Therefore, ICRU developed a set of operational dose quantities for use in radiation measurements for external radiations that provide assessment of the protection quantities. ICRU has examined the rationale for operational quantities taking into account the changes in the definitions of the protection quantities in the ICRP 2007 Recommendations. The committee has investigated a set of alternative definitions for operational quantities different to the existing quantities. The major change in the currently favoured set of quantities is the redefinition of the operational quantities for area monitoring from being based on doses at a point in the ICRU sphere to ones based on particle fluence and the relationship to the protection quantities.

Journal Articles

Summary of ICRP Symposium on Radiological Protection Dosimetry

Endo, Akira; Hamada, Nobuyuki*

Isotope News, (745), p.42 - 43, 2016/06

ICRP Symposium on Radiological Protection Dosimetry was held in Hongo campus, the University of Tokyo on February 18, 2016. Committee 2 of the International Commission on Radiological Protection (ICRP) is engaged in the development of dose coefficients for the assessment of internal and external radiation exposures; development of reference biokinetic and dosimetric models, and reference data for workers and members of the public. The symposium aimed at reviewing the current work of ICRP and discussing research needed for the ICRP System of radiological protection dosimetry. This article reviews the presentations and discussion in the symposium.

88 (Records 1-20 displayed on this page)