Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zhao, Q.*; Saito, Takeshi*; Miyakawa, Kazuya; Sasamoto, Hiroshi; Kobayashi, Taishi*; Sasaki, Takayuki*
Journal of Hazardous Materials, 428, p.128211_1 - 128211_10, 2022/04
The influence of humic acid and its radiological degradation on the sorption of Cs and Eu
by sedimentary rock was investigated to understand the sorption process of metal ions and humic substances. Aldrich humic acid (HA) solution was irradiated with different doses of gamma irradiation using a Co-60 gamma-ray source prior to the contact between the metal ions and the solid sorbent. The HA molecule decomposed to smaller molecules with a lower complexation affinity. Batch sorption experiments were performed to evaluate the effect of gamma-irradiated HA on the sorption of Cs
and Eu
ions. The addition of non-irradiated HA weakened the sorption of Eu because of the lower sorption of the neutral or negatively charged Eu-HA complexes compared with free Eu ions. The sorption of monovalent Cs ions was barely affected by the presence of HA and its gamma irradiation. The concentration ratio of HA complexed species and non-complexed species in the solid and liquid phases was evaluated by sequential filtration and chemical equilibrium calculations. The ratios supported the minimal contribution of HA to Cs sorption. However, the concentration ratio for Eu
in the liquid phase was high, indicating that the complexing ability of HA to Eu
was higher than that of HA to Cs
ions. Therefore, the sorption of free Eu
would predominate with the gamma irradiation dose applied to the HA solution under a radiation field near the HLW package.
Asahi, Yoshimitsu; Shimamura, Keisuke*; Kobayashi, Hidekazu; Kodaka, Akira
JAEA-Technology 2021-026, 50 Pages, 2022/03
In Tokai Reprocessing Plant, the highly active liquid waste derived from a spent fuel reprocessing is vitrified with a Liquid-Fed Ceramic Melter (LFCM) embedded in Tokai Vitrification Facility (TVF). For an LFCM, the viscosity of melted glass is increased by the deposition of oxidation products of platinum group elements (PGE) and the PGE-containing glass tends to settle to the melter's bottom basin even after draining glass out. Removal of the PGE-containing glass is needed to avoid the Joule heating current from being affected by the glass, it requires time-consuming work to remove. For the early accomplishment of vitrifying the waste, Japan Atomic Energy Agency is planning to replace the current melter with the new one in which the amount of PGE sediments would be reduced. In the past design activities for the next melter, several kinds of shapes in regard to the furnace bottom and the strainer were drawn. Among these designs, the one in which the discharge ratio of PGE-containing glass would be as much as or greater than the current melter and which be able to perform similar operational sequences done in the current melter is selected here. Firstly, an operational sequence to produce one canister of vitrified waste is simulated for three melter designs with a furnace bottom shape, using 3D thermal-hydraulic calculations. The computed temperature distribution and its changes are compared among the candidate structures. After discussions about the technical and structural feasibilities of each design, a cone shape with a 45 slope was selected as the bottom shape of the next melter. Secondly, five strainer designs that fit the bottom shape above mentioned are drawn. For each design, the fluid drag and the discharge ratio of relatively high viscosity fluid resting near the bottom are estimated, using steady or unsteady CFD simulation. By draining silicone oil from acrylic furnace models, it was confirmed experimentally that there are no vortices
Nakano, Sumika*; Marumo, Kazuki*; Kazami, Rintaro*; Saito, Takumi*; Haraga, Tomoko; Tasaki-Handa, Yuiko*; Saito, Shingo*
Environmental Science & Technology, 55(22), p.15172 - 15180, 2021/11
Humic acid (HA) can strongly complex with metal ions to form a supramolecular assembly via coordination binding. However, determining the supramolecular size distribution and stoichiometry between small HA unit molecules constituting HA supramolecule and metal ions has proven to be challenging. Here, we investigated the changes in the size distributions of HAs induced by Cu and Tb
ions using a unique polyacrylamide gel electrophoresis (PAGE) for the separation and quantification of HA complexes and metal ions bound, followed by UV-Vis spectroscopy and EEM-PARAFAC. It was found that the supramolecular behaviors of Cu
and Tb
complexes with HA collected from peat and deep groundwater (HHA) differed. Our results suggest that this supramolecular stoichiometry is related to the abundance of sulfur atoms in the elemental composition of HHA. Our results provide new insights into HA supramolecules formed via metal complexation.
Villaret, F.*; Boulnat, X.*; Aubry, P.*; Yano, Yasuhide; Otsuka, Satoshi; Fabregue, D.*; de Carlan, Y.*
Materials Science & Engineering A, 824, p.141794_1 - 141794_10, 2021/09
Times Cited Count:0 Percentile:0(Nanoscience & Nanotechnology)Liss, K.-D.*; Harjo, S.; Kawasaki, Takuro; Aizawa, Kazuya; Xu, P. G.
Journal of Alloys and Compounds, 869, p.159232_1 - 159232_9, 2021/07
Times Cited Count:0 Percentile:0(Chemistry, Physical)Nugraha, E. D.*; Hosoda, Masahiro*; Kusdiana*; Untara*; Mellawati, J.*; Nurokhim*; Tamakuma, Yuki*; Ikram, A.*; Syaifudin, M.*; Yamada, Ryohei; et al.
Scientific Reports (Internet), 11(1), p.14578_1 - 14578_16, 2021/07
Times Cited Count:1 Percentile:76.35(Multidisciplinary Sciences)Mamuju is one of the regions in Indonesia which retains natural conditions but has relatively high exposure to natural radiation. The goals of the present study were to characterize exposure of the entire Mamuju region as a high natural background radiation area (HNBRA) and to assess the existing exposure as a means for radiation protection of the public and the environment. A cross-sectional study method was used with cluster sampling areas by measuring all parameters that contribute to external and internal radiation exposures. It was determined that Mamuju was a unique HNBRA with the annual effective dose between 17 and 115 mSv, with an average of 32 mSv. The lifetime cumulative dose calculation suggested that Mamuju residents could receive as much as 2.2 Sv on average which is much higher than the average dose of atomic bomb survivors for which risks of cancer and non-cancer diseases are demonstrated. The study results are new scientific data allowing better understanding of health effects related to chronic low-dose-rate radiation exposure and they can be used as the main input in a future epidemiology study.
Collaborative Laboratories for Advanced Decommissioning Science; Kyushu University*
JAEA-Review 2020-036, 176 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Transparent Materials for Radiation Shield Using Nanoparticles" conducted in FY2019. The present study aims to reduce radiation exposure of workers in debris retrieval/analysis and reduce deterioration of optical and electronic systems in remote cameras. For these purposes, we develop transparent radiation shield by making the shield materials into nanoparticles, and dispersing/solidifying them in epoxy resin. By making boride or heavy metal compounds into nanoparticles, we will also develop a radiation shield that shields both neutrons and gamma-rays, and also suppresses secondary gamma-rays produced from neutrons.
Sasaki, Yuji; Nakase, Masahiko*
Petorotekku, 43(11), p.782 - 787, 2020/11
As analog compounds of DGA (diglycolamide), MIDOA(methylimino-diacetamide) and TDGA(thia-diglycolammide) are used for the extractants of platinum group metals. These extractants can be extracted noble metals and oxyanions, which followed by HSAB theory. The high concentration of these metals can be also extracted by these compounds. The research of metal-complex structures gives the information on the ability and role for complex-formation, which will be useful for the development of novel extractants.
Aono, Ryuji; Mitsukai, Akina; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2020-006, 70 Pages, 2020/08
Radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried at the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JPDR and JRR-4. In this report, we summarized the radioactivity concentrations of 19 radionuclides (H,
C,
Cl,
Co,
Ni,
Sr,
Nb,
Tc,
Ag,
I,
Cs,
Eu,
Eu,
U,
U,
Pu,
Pu,
Am,
Cm) which were obtained from radiochemical analysis of those samples.
Collaborative Laboratories for Advanced Decommissioning Science; Kyushu University*
JAEA-Review 2019-039, 104 Pages, 2020/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Transparent Materials for Radiation Shield using Nanoparticles". The present study aims to reduce radiation exposure of workers in debris retrieval/analysis and reduce deterioration of optical and electronic systems in remote cameras. For these purposes, we develop transparent radiation shield by making the shield materials into nanoparticles, and dispersing/solidifying them in epoxy resin. By making BC and W into nanoparticles, we will also develop a radiation shield that shields both neutrons and gamma-rays, and also suppresses secondary gamma-rays produced from neutrons.
Kondo, Hiroo*; Kanemura, Takuji*; Park, C. H.*; Oyaizu, Makoto*; Hirakawa, Yasushi; Furukawa, Tomohiro
Fusion Engineering and Design, 146(Part A), p.285 - 288, 2019/09
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Herein, the wall shear stress in a double contraction nozzle has been evaluated experimentally to produce a liquid lithium (Li) target as a beam target for intense fusion neutron sources such as the International Fusion Materials Irradiation Facility (IFMIF), the Advanced Fusion Neutron Source (A-FNS), and the DEMO Oriented Neutron Source (DONES). The boundary layer thickness and wall shear stress are essential physical parameters to understand erosion-corrosion by the high-speed liquid Li flow in the nozzle, which is the key component in producing a stable Li target. Therefore, these parameters were experimentally evaluated using an acrylic mock-up of the target assembly. The velocity distribution in the nozzle was measured by a laser-doppler velocimeter and the momentum thickness along the nozzle wall was calculated using an empirical prediction method. The resulting momentum thickness was used to estimate the variation of the wall shear stress along the nozzle wall. Consequently, the wall shear stress was at the maximum in the second convergent section in front of the nozzle exit.
Matsushita, Kentaro; Ito, Kei*; Ezure, Toshiki; Tanaka, Masaaki
Dai-24-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (USB Flash Drive), 5 Pages, 2019/06
In the design study on a sodium-cooled fast reactor (SFR), a numerical simulation code named SYRENA has been developed in Japan Atomic Energy Agency to analyze the behavior of gas bubbles and/or dissolved gas in the primary coolant system. In the present study, the effect of the non-condensable gas entrainment at the free surface on the bubble and the dissolved gas behavior in the primary coolant system were investigated for a typical pool type reactor, and also effect of a dipped-plate (D/P) installed below the free surface in the reactor vessel to suppress the gas bubble entrainment into the primary coolant system was especially investigated. It was clarified that the D/P was influential to the non-condensable gas behavior and the molar flow rate of gas bubbles in the primary coolant system varies depending on the relationship between the gas entrainment rate at the free surface and the exchange flow rate through the D/P.
Ohgama, Kazuya; Ota, Hirokazu*; Oki, Shigeo; Iizuka, Masatoshi*
Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05
Matsushita, Kentaro; Ito, Kei*; Ezure, Toshiki; Tanaka, Masaaki
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05
A numerical simulation code named SYRENA has been developed in JAEA to analyze the behavior of entrained bubbles and dissolved gas in the primary coolant of sodium-cooled fast reactor (SFR). In the present study, a flow network model of SYRENA to a hypothetical pool type reactor was developed and the non-condensable gas behavior was investigated through the comparison with that in the loop type reactor. The effect of the dipped-plate (D/P) tentatively introduced into the pool-type reactor on the gas behavior was investigated through the parametric analyses about the sodium exchange flow rate through the D/P and the gas entrainment rate at the free surface. It was suggested that the increase in the exchange flow rate through the D/P doesn't always work to decrease the bubble volume in the primary coolant system.
Kondo, Hiroo*; Kanemura, Takuji*; Hirakawa, Yasushi; Furukawa, Tomohiro
Fusion Engineering and Design, 136(Part A), p.24 - 28, 2018/11
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)In the IFMIF-EVEDA project, we designed and constructed the IFMIF-EVEDA Li Test Loop (ELTL), and we performed experiments to validate the stability of the Li target. This project required a diagnostic tool to be developed in order to examine the Li target; as such, we developed a unique laser-based method that we call the laser-probe method; this method combines a high-precision laser distance meter with a statistical data analysis method. Following the successful development of the laser-probe method, we proposes a long-distance-measurement of the laser probe method (long-distance LP method) as a diagnostics tool in off-beam conditions for IFMIF or the relevant neutron sources. In this study, the measurement uncertainty resulting from coherency of the laser in a long-distance-measurement has been verified by using stationary objects and a water jet simulating the liquid Li target.
Futakawa, Masatoshi
Proceedings of 13th International Symposium on Advanced Science and Technology in Experimental Mechanics (13th ISEM'18) (USB Flash Drive), 6 Pages, 2018/10
Issues on the engineering technologies relating to high-power spallation neutron sources with liquid metals are introduced. The present status on research activities and results was reviewed.
Kondo, Masatoshi*; Okubo, Nariaki; Irisawa, Eriko; Komatsu, Atsushi; Ishikawa, Norito; Tanaka, Teruya*
Energy Procedia, 131, p.386 - 394, 2017/12
Times Cited Count:4 Percentile:95.35The chemical behaviors of lead (Pb) based coolants in the air ingress accident of fast reactors were investigated by means of the thermodynamic considerations and the static oxidation experiments for Pb alloys at various chemical compositions. The results of the static oxidation tests for lead-bismuth (Pb-Bi) alloys indicated that Pb was depleted from the alloy due to the preferential formation of PbO in air at 773K. Pb-Bi oxide and BiO
were formed after the enrichment of Bi in the alloys due to the Pb depletion. The oxidation rates of the alloys were much larger than that of the steels, and became larger with higher Pb concentration in the alloys. The compatibility of Pb-Bi alloys with stainless steel was worse when the Pb concentration in the alloys became low, since the dissolution type corrosion was promoted by the Bi composition in the alloy. The Pb-Li alloys were oxidized as they formed Li
PbO
and Li
CO
. Then, Li was depleted from the alloy.
Irisawa, Eriko; Kato, Chiaki; Kamoshida, Michio*; Hakamatsuka, Yasuyuki*; Ueno, Fumiyoshi; Yamamoto, Masahiro
Proceedings of European Corrosion Congress 2017 (EUROCORR 2017) and 20th ICC & Process Safety Congress 2017 (USB Flash Drive), 9 Pages, 2017/09
Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*
Mechanical Engineering Journal (Internet), 4(3), p.16-00592_1 - 16-00592_9, 2017/06
Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 8 Pages, 2017/04