Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tanabe, Kosuke*; Komeda, Masao; Toh, Yosuke; Kitamura, Yasunori*; Misawa, Tsuyoshi*
Nihon Genshiryoku Gakkai-Shi ATOMO, 67(3), p.198 - 202, 2025/03
no abstracts in English
Kaburagi, Masaaki; Kamada, Kei*; Ishii, Junya*; Matsumoto, Tetsuro*; Manabe, Seiya*; Masuda, Akihiko*; Harano, Hideki*; Kato, Masahiro*; Shimazoe, Kenji*
Journal of Instrumentation (Internet), 19(11), p.P11019_1 - P11019_16, 2024/11
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*
JAEA-Review 2024-020, 77 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted from FY2020 to FY2022. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle.
Tanabe, Kosuke*; Komeda, Masao; Toh, Yosuke; Kitamura, Yasunori*; Misawa, Tsuyoshi*; Tsuchiya, Kenichi*; Sagara, Hiroshi*
Scientific Reports (Internet), 14, p.18828_1 - 18828_10, 2024/08
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Okita, Shoichiro; Sakurai, Tatsuhiro*; Ezaki, Iwao*; Takagi, Katsuyuki*; Nakano, Takayuki*; Hino, Masahiro*
KURNS Progress Report 2023, P. 97, 2024/07
Ito, Fumiaki*; Lee, J.; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Mochimaru, Takanori*; Hori, Junichi*; Terada, Kazushi*; Koizumi, Mitsuo
Nuclear Instruments and Methods in Physics Research A, 1064, p.169465_1 - 169465_9, 2024/07
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*
JAEA-Review 2022-068, 90 Pages, 2023/05
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of thin SiC neutron detector with high radiation resistance" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional neutron detectors is difficult because heavy radiation shields are needed.
Suzuki, Kenji*; Miura, Yasufumi*; Shiro, Ayumi*; Toyokawa, Hidenori*; Saji, Choji*; Shobu, Takahisa; Morooka, Satoshi
Zairyo, 72(4), p.316 - 323, 2023/04
Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*
JAEA-Review 2022-070, 70 Pages, 2023/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2021. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, and neutron detectors to be developed ...
Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*
JAEA-Review 2021-049, 67 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2020. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, …
Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2021-042, 115 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor and integrated circuit whose radiation resistance was improved by circuit design.
Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08
Times Cited Count:2 Percentile:25.50(Instruments & Instrumentation)Nakamura, Tatsuya; Kawasaki, Takuro; To, Kentaro; Harjo, S.; Sakasai, Kaoru; Aizawa, Kazuya
JPS Conference Proceedings (Internet), 33, p.011097_1 - 011097_6, 2021/03
A large area, two-dimensional scintillation neutron detector was developed for Takumi diffractometer in the J-PARC MLF. The detector is made based on a scintillator/wavelength shifting fiber technology. The detector has a neutron-sensitive area of 32 32 cm with a pixel size of 5
5 mm, which is about 1.5-fold larger than the SENJU detector TAKUMI is one of the neutron diffractometers in the MLF dedicated to use for engineering material research. The developed detector array adds new capabilities to the instrument to measure two-dimensional data collection at the back-scattering angles with a better time-of-flight resolution.
Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2020-058, 101 Pages, 2021/02
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies" conducted in FY2019.
Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*
JAEA-Review 2020-057, 50 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Thin SiC Neutron Detector with High Radiation Resistance" conducted in FY2019. In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional radiation monitors is difficult because heavy radiation shields are needed. In the present study, we will develop a neutron detector using thin, light-weight and radiation-resistive silicon carbide (SiC) that has low sensitivity to gamma-rays as well as the data collection system in collaboration with the U.K.
Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01
Times Cited Count:6 Percentile:36.73(Physics, Applied)Nakamura, Tatsuya; To, Kentaro; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru
Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2019), Vol.1, p.735 - 736, 2020/08
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)A large area, position-sensitive scintillation neutron detector was developed for upgrading the SENJU, time-of-flight Laue single crystal neutron diffractometer, in J-PARC MLF. The detector has a neutron-sensitive area of 512 512 mm with a pixel size of 4
4 mm. The detector was developed for upgrading of the SENJU instrument. The large area detector is to be installed below the vacuum tank to enlarge a covering solid angle. A
Li:ZnS (Ag) scintillator and wavelength-shifting fiber technologies are employed. Each fiber channel is read out individually with photon counting mode. The electronics boards are implemented at the backside of the detector, enabling the detector depth as short as 20 cm. The detector exhibited a detection efficiency of 45% for thermal neutron. No degradation in fiber position and in neutron sensitivity has been observed over one year after production. In this paper, detector design and detector performances are presented.
Vu, TheDang; Nishimura, Kazuma*; Shishido, Hiroaki*; Harada, Masahide; Oikawa, Kenichi; Miyajima, Shigeyuki*; Hidaka, Mutsuo*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Journal of Physics; Conference Series, 1590, p.012036_1 - 012036_9, 2020/07
Times Cited Count:3 Percentile:86.27(Engineering, Electrical & Electronic)Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*
JAEA-Review 2019-042, 43 Pages, 2020/03
JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Thin SiC Neutron Detector with High Radiation Resistance". In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional radiation monitors is difficult because heavy radiation shields are needed. In the present study, we will develop a neutron detector using thin, light-weight and radiation-resistive silicon carbide (SiC) that has low sensitivity to gamma-rays as well as the data collection system in collaboration with the U.K. Using this system, the performance tests will be conducted supposing the real debris retrieval including the irradiation tests. Based on the results, we will conduct research and development aiming to make the system ready for use in real decommissioning works.
Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2019-040, 77 Pages, 2020/03
JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies". The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor (200 m
510
m thickness) and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by Japan-UK collaboration) and its demonstration tests will be conducted in a PCV mock-up water tank.