Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nuclear Science Research Institute, Sector of Nuclear Science Research
JAEA-Review 2021-067, 135 Pages, 2022/03
Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2017 as well as the activity on research and development carried out by the Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Materials Sciences Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.
Nuclear Science Research Institute
JAEA-Review 2021-006, 248 Pages, 2021/12
Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each department manages facilities and develops related technologies to achieve the "Middle and long-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2015 and 2016 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Center, Material Science Research Center, and development activities of Nuclear Human Resources Development Center, using facilities of NSRI.
Department of HTTR
JAEA-Review 2021-017, 81 Pages, 2021/11
The High Temperature Engineering Test Reactor (HTTR) is the first High-Temperature Gas cooled Reactor (HTGR) constructed in Japan at the Oarai Research and Development Institute of the Japan Atomic Energy Agency with 30MW in thermal power and 950C of outlet coolant temperature. The purpose of the HTTR is to establish and upgrade basic technologies for HTGRs. The HTTR has accumulated a lot of experience of HTGRs' operation and maintenance up to the present time throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2019, we continued to make effort to restart operations of the HTTR that stopped since the 2011 off the Pacific coast of Tohoku Earthquake. It is necessary for the HTTR reoperation to prove conformity with the new regulatory requirements for research reactors enacted in December 2013. So we might cope with government agency to pass the inspection of application document for the HTTR licensing. This report summarizes the activities carried out in the fiscal year 2019, which were the situation of the new regulatory requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.
Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 58(10), p.1061 - 1070, 2021/10
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)In a well-thermalized neutron field, it is principally possible to drive a thermal-neutron capture cross-section without considering an epithermal neutron component. This was demonstrated by a neutron activation method using the graphite thermal column (TC-Pn) of the Kyoto University Research Reactor. First, in order to confirm that the graphite thermal column was a well-thermalized neutron field, neutron irradiation was performed with neutron flux monitors: Au,
Co,
Sc,
Cu, and
Mo. The TC-Pn was confirmed to be extremely thermalized on the basis of Westcott's convention, because the thermal-neutron flux component took a constant value regardless of the sensitivity of each flux monitor to epithermal neutrons. Next, as a demonstration, the thermal-neutron capture cross section of
Ta(n,
)
Ta reaction was measured using the graphite thermal column, and then derived to be 20.5
0.4 barn, which supported the evaluated value of 20.4
0.3 barn. The
Ta nuclide could be useful as a flux monitor that complements the sensitivity between
Au and
Mo monitors.
Xu, P. G.; Liss, K.-D.*
Quantum Beam Science (Internet), 5(2), p.11_1 - 11_14, 2021/06
Department of Research Reactor and Tandem Accelerator
JAEA-Review 2020-074, 105 Pages, 2021/03
The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and TPL (Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2018. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.
Department of Research Reactor and Tandem Accelerator
JAEA-Review 2020-073, 113 Pages, 2021/03
The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory. This annual report describes the activities of our department in fiscal year of 2017. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.
Department of Research Reactor and Tandem Accelerator
JAEA-Review 2020-072, 102 Pages, 2021/03
The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2016. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.
Yonomoto, Taisuke; Nakashima, Hiroshi*; Sono, Hiroki; Kishimoto, Katsumi; Izawa, Kazuhiko; Kinase, Masami; Osa, Akihiko; Ogawa, Kazuhiko; Horiguchi, Hironori; Inoi, Hiroyuki; et al.
JAEA-Review 2020-056, 51 Pages, 2021/03
A group named as "The group for investigation of reasonable safety assurance based on graded approach", which consists of about 10 staffs from Sector of Nuclear Science Research, Safety and Nuclear Security Administration Department, departments for management of nuclear facility, Sector of Nuclear Safety Research and Emergency Preparedness, aims to realize effective graded approach (GA) about management of facilities and regulatory compliance of JAEA. The group started its activities in September, 2019 and has had discussions through 10 meetings and email communications. In the meetings, basic ideas of GA, status of compliance with new regulatory standards at each facility, new inspection system, etc were discussed, while individual investigation at each facility were shared among the members. This report is compiled with expectation that it will help promote rational and effective safety management based on GA by sharing contents of the activity widely inside and outside JAEA.
Kenzhina, I.*; Ishitsuka, Etsuo; Ho, H. Q.; Sakamoto, Naoki*; Okumura, Keisuke; Takemoto, Noriyuki; Chikhray, Y.*
Fusion Engineering and Design, 164, p.112181_1 - 112181_5, 2021/03
Tritium release into the primary coolant during operation of the JMTR (Japan Materials Testing Reactor) and the JRR-3M (Japan Research Reactor-3M) had been studied. It is found that the recoil release by Li(n
,
)
H reaction, which comes from a chain reaction of beryllium neutron reflectors, is dominant. To prevent tritium recoil release, the surface area of beryllium neutron reflectors needs to be minimum in the core design and/or be shielded with other material. In this paper, as the feasibility study of the tritium recoil barrier for the beryllium neutron reflectors, various materials such as Al, Ti, V, Ni, and Zr were evaluated from the viewpoint of the thickness of barriers, activities after long-term operations, and effects on the reactivities. From the results of evaluations, Al would be a suitable candidate as the tritium recoil barrier for the beryllium neutron reflectors.
Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.
High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02
As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.
Kenzhina, I.*; Ishitsuka, Etsuo; Okumura, Keisuke; Ho, H. Q.; Takemoto, Noriyuki; Chikhray, Y.*
Journal of Nuclear Science and Technology, 58(1), p.1 - 8, 2021/01
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)The sources and mechanisms for the tritium release into the primary coolant in the JMTR and the JRR-3M containing beryllium reflectors are evaluated. It is found that the recoil release from chain reaction of Be is dominant and its calculation results agree well with trends derived from the measured variation of tritium concentration in the primary coolant. It also indicates that the simple calculation method used in this study for the tritium recoil release from the beryllium reflectors can be utilized for an estimation of the tritium release into the primary coolant for a research and testing reactors containing beryllium reflectors.
Yonomoto, Taisuke; Mineo, Hideaki; Murayama, Yoji; Hohara, Shinya*; Nakajima, Ken*; Nakatsuka, Toru; Uesaka, Mitsuru*
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(1), p.73 - 77, 2021/01
no abstracts in English
Motome, Yuiko; Akiyama, Yoshiya; Murao, Hiroyuki
Journal of Nuclear Engineering and Radiation Science, 6(2), p.021115_1 - 021115_11, 2020/04
The nuclear safety research reactor (NSRR) is a research reactor of training research isotopes general atomics -annular core pulse reactor type. The NSRR facility has been utilized for fuel irradiation experiments to study the behaviors of nuclear fuels under reactivity-initiated accident conditions. Under the new regulation standards, which was established after the Fukushima Daiichi accident, research reactors are regulated based on the risk of the facilities. To apply the graded approach, the radiation effects on residents living around the NSRR under the external hazards were evaluated, and the level of the risk of the NSRR facility was investigated. This paper summarizes the result of the evaluation in the case where the safety functions are lost due to a tornado, an earthquake followed by a tsunami. All in all, the risk is confirmed to be relatively low, since the effective dose on the residents is found to be below 5 mSv per event due to the loss of the safety functions.
Nuclear Science Research Institute
JAEA-Review 2018-036, 216 Pages, 2019/03
Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office, Fukushima Project Team and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2013 and 2014 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Research Center, Nuclear Science and Engineering Center and Quantum Beam Science Center, and activity of Nuclear Human Resource Development Center, using facilities of NSRI.
Kawamata, Takanori; Onuma, Yuichi; Hanakawa, Hiroki
JAEA-Review 2018-031, 33 Pages, 2019/02
As "Regulations on events to be reported by nuclear disaster prevention manager based on act on special measures concerning nuclear emergency preparedness" was revised and enfored in 2017, Nuclear operator emergency action plan at Oarai Research and Development Institute was reconsidered, and Emergency Action Level (EAL) in JMTR was newly set. In setting the EAL, characteristics of the JMTR and EAL in nuclear power reactors were considerd because the characteristics of research reactors are different in reactor types. This report shows the basic policy and the selection result of the EAL setting in the JMTR.
Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness
JAEA-Review 2018-022, 201 Pages, 2019/01
Nuclear Safety Research Center (NSRC), Sector of Nuclear Safety Research and Emergency Preparedness, Japan Atomic Energy Agency (JAEA) is conducting technical support to nuclear safety regulation and safety research based on the Mid-Long Term Target determined by Japanese government. This report summarizes the research structure of NSRC and the cooperative research activities with domestic and international organizations as well as the nuclear safety research activities and results in the period from JFY 2015 to 2017 on the nine research fields in NSRC; (1) severe accident analysis, (2) radiation risk analysis, (3) safety of nuclear fuels in light water reactors (LWRs), (4) thermohydraulic behavior under severe accident in LWRs, (5) materials degradation and structural integrity, (6) safety of nuclear fuel cycle facilities, (7) safety management on criticality, (8) safety of radioactive waste management, and (9) nuclear safeguards.
Shibahara, Yuji*; Uehara, Akihiro*; Fujii, Toshiyuki*; Nakamura, Shoji; Kimura, Atsushi; Hales, B. P.; Iwamoto, Osamu
JAEA-Conf 2018-001, p.205 - 210, 2018/12
In the ImPACT project, high-precision mass analysis was performed on a Cs standard solution for using
Cs included in the standard solution as an impurity to measure the
Cs cross-sections. A
Cs standard solution of only 10Bq (pg order) was analyzed, and the isotope ratio of
Cs and
Cs was obtained with an accuracy of 0.5%.
Motome, Yuiko; Akiyama, Yoshiya; Murao, Hiroyuki
Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07
The NSRR is a research reactor of TRIGA-ACPR type, located in the Nuclear Science Research Institute. The NSRR facility has been utilized for fuel irradiation experiments to study the behaviors of nuclear fuels under reactivity initiated accident conditions. Under the new regulation standards after the Fukushima Daiichi accident, the research reactors are being regulated according to the risk of the facility. Graded approach is introduced in the regulation. In order to apply the graded approach, the radiation effects of residents living around the NSRI under the external hazards were evaluated and the level of the risk of the NSRR facility was investigating. This report is summarized for the result of the evaluation in case the safety functions were lost by the tornado, earthquake and following tsunami. As the result, the risk is confirmed to be low, since the effective dose of the residents has been below 5 mSv per event due to the loss of the safety functions by the tornado, earthquake and following tsunami.
Nakamura, Shoji; Shibahara, Yuji*; Uehara, Akihiro*; Fujii, Toshiyuki*; Kimura, Atsushi; Hales, B. P.; Iwamoto, Osamu
KURRI Progress Report 2016, P. 66, 2017/07
In the ImPACT project, high-precision mass analysis was performed on a Cs standard solution for using
Cs included in the standard solution as an impurity to measure the
Cs cross-sections. A
Cs standard solution of only 10Bq (pg order) was analyzed, and the isotope ratio of
Cs and
Cs was obtained with an accuracy of 0.5%.