Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 101

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Construction of a Compton camera-equipped robotic system capable of moving autonomously towards the radiation source

Sato, Yuki; Kakuto, Takeshi*; Tanaka, Takayuki*; Shimano, Hiroyuki*

European Physical Journal; Special Topics, 10 Pages, 2025/00

 Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)

Journal Articles

Decommissioning robot manipulator for fuel debris retrieval

Nakashima, Shinsuke*; Moro, A.*; Komatsu, Ren*; Faragasso, A.*; Matsuhira, Nobuto*; Woo, H.*; Kawabata, Kuniaki; Yamashita, Atsushi*; Asama, Hajime*

Proceedings of International Topical Workshop on Fukushima Decommissioning Research 2024 (FDR2024) (Internet), 4 Pages, 2024/10

Journal Articles

Detailed visualization of radioactive hotspots inside the Unit 1 reactor building of the Fukushima Daiichi Nuclear Power Station using an integrated Radiation Imaging System mounted on a Mecanum wheel robot

Sato, Yuki; Terasaka, Yuta; Oura, Masatoshi*

Journal of Nuclear Science and Technology, 61(7), p.856 - 870, 2024/07

 Times Cited Count:8 Percentile:91.24(Nuclear Science & Technology)

Journal Articles

Development of a radioactive substance detection system integrating a Compton camera and a LiDAR camera with a hexapod robot

Sato, Yuki; Kakuto, Takeshi*; Tanaka, Takayuki*; Shimano, Hiroyuki*; Morohashi, Yuko; Hatakeyama, Tomoyoshi*; Nakajima, Junsaku; Ishiyama, Masahiro

Nuclear Instruments and Methods in Physics Research A, 1063, p.169300_1 - 169300_7, 2024/06

 Times Cited Count:3 Percentile:86.15(Instruments & Instrumentation)

JAEA Reports

Embedded system using a radiation-hardened processor (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2023-038, 48 Pages, 2024/03

JAEA-Review-2023-038.pdf:2.58MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Embedded system using a radiation-hardened processor" conducted in FY2022. The present study aims to be developing a radiation-hardened optoelectronic processor with a 10 MGy total-ionizing-dose (TID) tolerance, a radiation-hardened processor without any optical component with a 4 MGy TID tolerance, a radiation-hardened memory with a 4 MGy TID tolerance, and a radiation-hardened power supply unit with a 1 MGy TID tolerance. Moreover, Japanese research group will support radiation- hardened field programmable gate arrays, power supply units, and radiation-hardened optical systems for radiation-hardened robot systems and radiation sensor systems developed by UK team.

JAEA Reports

Development of a cooperative operation robot system for radiation source exploration (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2023-030, 80 Pages, 2024/03

JAEA-Review-2023-030.pdf:4.96MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a cooperative operation robot system for radiation source exploration" conducted in FY2022. The present study aims to develop a Cooperative Operation Robot system for RAdiation Source Exploration (CORRASE). The multiple robot system provides radiation source exploration with wide field of view, rapidity, and low cost. The radiation source exploration is realized with multiple robots carrying directional gamma-ray detectors determining the incident direction of the incoming gamma-rays. We will develop the system by the final year of this proposal aiming for application in the Fukushima Daiichi Nuclear Power Station.

Journal Articles

Japan Atomic Energy Agency; Contribution to the decommissioning of the Fukushima Daiichi Nuclear Power Station and the reconstruction of Fukushima Prefecture at the Naraha center for Remote Control technology development

Morimoto, Kyoichi; Ono, Takahiro; Kakutani, Satomi; Yoshida, Moeka; Suzuki, Soichiro

Journal of Robotics and Mechatronics, 36(1), p.125 - 133, 2024/02

The Naraha Center for Remote Control Technology Development was established for the purpose of developing and verifying remote control equipment for promoting the decommissioning of the Fukushima Daiichi Nuclear Power Station and the external use of this center was started in 2016. The mission of this center is to contribute to the decommissioning of the Fukushima Daiichi Nuclear Power Station and for the reconstruction of Fukushima Prefecture. In this review, we describe the equipment related to the full-scale mock-up test, the component test for a remote-control device and the virtual reality system in this center. In addition, the case examples for usage of these equipment are introduced.

Journal Articles

Development of performance evaluation method for nuclear emergency response robot

Yamada, Taichi; Watanabe, Kaho; Suzuki, Soichiro; Kawabata, Kuniaki

Automation Systems, 39(464), p.88 - 92, 2023/09

In Fukushima Daiichi Nuclear Power Station (FDNPS) emergency response and decommissioning, high radiation or unknown environments significantly restrict human workers' activity. Thus, a remotely controlled robot is essential to operate in such an environment instead of human workers. However, remote robot operation is not easy, and it is required to understand the robot's capability, that is, what/how the robot can do on the site. Therefore, robot evaluation method development is important for remote robot operation in disaster sites. We survey the required capabilities for a remotely controlled robot from the remote operation cases in FDNPS and develop test methods to evaluate the capabilities. This paper introduces the survey of FDNPS remote operation cases and the test method development.

Journal Articles

Visualization software for radioactive contamination based on Compton camera: COMRIS

Sato, Yuki; Minemoto, Kojiro*; Nemoto, Makoto*

Radiation Protection Dosimetry, 199(8-9), p.1021 - 1028, 2023/06

 Times Cited Count:5 Percentile:71.02(Environmental Sciences)

Journal Articles

Development of performance evaluation method for nuclear emergency response robot

Yamada, Taichi; Watanabe, Kaho; Suzuki, Soichiro; Kawabata, Kuniaki

Keisoku To Seigyo, 62(5), p.268 - 271, 2023/05

In Fukushima Daiichi Nuclear Power Station (FDNPS) emergency response and decommissioning, high radiation or unknown environments significantly restrict human workers' activity. Thus, a remotely controlled robot is essential to operate in such an environment instead of human workers. However, remote robot operation is not easy, and it is required to understand the robot's capability, that is, what/how the robot can do on the site. Therefore, robot evaluation method development is important for remote robot operation in disaster sites. We survey the required capabilities for a remotely controlled robot from the remote operation cases in FDNPS and develop test methods to evaluate the capabilities. This paper introduces the survey of FDNPS remote operation cases and the test method development.

JAEA Reports

Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-060, 91 Pages, 2023/02

JAEA-Review-2022-060.pdf:3.95MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Challenge to investigation of fuel debris in RPV by an advanced Super Dragon articulated robot arm" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. Through this research from FY2019 to FY2021, we will closely cooperate with each research item under the principal investigator as well as with CLADS, etc., to advance the research while exchanging opinions/information with the site and promote the research implementation plan in order to apply the technology to the actual equipment at the 1F site. Meetings and conferences were held to promote the research implementation plan, with the aim of realizing a technology …

JAEA Reports

Development of a cooperative operation robot system for radiation source exploration (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-041, 76 Pages, 2023/01

JAEA-Review-2022-041.pdf:3.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a cooperative operation robot system for radiation source exploration" conducted in FY2021. The present study aims to develop a Cooperative Operation Robot system for RAdiation Source Exploration (CORRASE). The multiple robot system provides radiation source exploration with wide field of view, rapidity, and low cost. The radiation source exploration is realized with multiple robots carrying directional gamma-ray detectors determining the incident direction of the incoming gamma-rays. We will develop the system by the final year of this proposal aiming for application in the Fukushima Daiichi Nuclear Power Station.

JAEA Reports

Semi-autonomous remote-control technology of an articulated mobile robot to recover from stuck states (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*

JAEA-Review 2022-029, 37 Pages, 2022/11

JAEA-Review-2022-029.pdf:1.89MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semiautonomous remote-control technology of an articulated mobile robot to recover from stuck states" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method.

Journal Articles

Development of PHITSPlugin for Radiation Behavior Calculation

Suzuki, Kenta; Yashiro, Hiroshi*; Kawabata, Kuniaki

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 4 Pages, 2022/10

JAEA Reports

Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Polytechnic University*

JAEA-Review 2022-011, 80 Pages, 2022/07

JAEA-Review-2022-011.pdf:5.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to research and develop semi-autonomous mobile robot systems (multi-sensor fusion system, semantic simultaneous localization and mapping (SLAM), system for traversable-route learning and safe traversable-route presentation, etc.) that simply, safely, and rapidly make semantic survey maps …

JAEA Reports

Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-045, 65 Pages, 2022/01

JAEA-Review-2021-045.pdf:3.41MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm" conducted in FY2020. The present study aims to develop the implementation techniques of the remote sensing method on a robot arm for monitoring the structure status in the reactor and the distribution of nuclear materials by a longarticulated robot arm with controlling and grasping the position and posture of the robot arm hand. In FY 2020, we have conducted fundamental operation check of the robot arm in the simulated environment, prototype construction of telescopic articulated arm and cable storage mechanism, investigation of drive wire specifications, improvement of LIBS probe, prototype construction of microchip laser LIBS probe, probe movement status check in the simple simulated arm, investigation of the dependence of laser beam depth of focus and laser beam angle, prototype fabrication of single component simulated test sample, improvement of simple spectroscopic optical system, evaluation of radiation resistance of ultrasonic sensor, prototype construction of array type air-coupled ultrasonic sensor and sound pressure investigation, improvement of a compact ultrasonic transmitting/receiving system, evaluation of applicability of ultrasonic technologies to liquids, development of complementary technologies for shape reconstruction using SfM and ultrasonic measurement technologies. Finally, we summarized them into this report.

JAEA Reports

Semi-autonomous remote-control technology of an articulated mobile robot to recover from stuck states (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*

JAEA-Review 2021-025, 33 Pages, 2021/11

JAEA-Review-2021-025.pdf:1.68MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semi- autonomous remote-control technology of an articulated mobile robot to recover from stuck states" conducted in FY2020. The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method. Finally, the effectiveness of them is demonstrated by experiments using an actual robot.

JAEA Reports

Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Polytechnic University*

JAEA-Review 2020-062, 47 Pages, 2021/01

JAEA-Review-2020-062.pdf:3.43MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Semantic Survey Map Building System using Semi-autonomous Mobile Robots for Surveying of Disaster Area and Gathering of Information in Nuclear Power Station" conducted in FY2019.

JAEA Reports

Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-040, 55 Pages, 2021/01

JAEA-Review-2020-040.pdf:3.95MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Challenge to Investigation of Fuel Debris in RPV by an Advanced Super Dragon Articulated Robot Arm" conducted in FY2019.

Journal Articles

Automatic data acquisition for visualizing radioactive substances by combining a gamma-ray imager and an autonomous mobile robot

Sato, Yuki; Minemoto, Kojiro*; Nemoto, Makoto*; Torii, Tatsuo

Journal of Instrumentation (Internet), 16(1), p.P01020_1 - P01020_18, 2021/01

 Times Cited Count:3 Percentile:18.05(Instruments & Instrumentation)

101 (Records 1-20 displayed on this page)