Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 80

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-045, 65 Pages, 2022/01

JAEA-Review-2021-045.pdf:3.41MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm" conducted in FY2020. The present study aims to develop the implementation techniques of the remote sensing method on a robot arm for monitoring the structure status in the reactor and the distribution of nuclear materials by a long-articulated robot arm with controlling and grasping the position and posture of the robot arm hand. In FY 2020, we have conducted fundamental operation check of the robot arm in the simulated environment, prototype construction of telescopic articulated arm and cable storage mechanism, investigation of drive wire specifications, improvement of LIBS probe, prototype construction of microchip

JAEA Reports

Semi-autonomous remote-control technology of an articulated mobile robot to recover from stuck states (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*

JAEA-Review 2021-025, 33 Pages, 2021/11

JAEA-Review-2021-025.pdf:1.68MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semi- autonomous remote-control technology of an articulated mobile robot to recover from stuck states" conducted in FY2020. The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method. Finally, the effectiveness of them is demonstrated by experiments using an actual robot.

JAEA Reports

Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Polytechnic University*

JAEA-Review 2020-062, 47 Pages, 2021/01

JAEA-Review-2020-062.pdf:3.43MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Semantic Survey Map Building System using Semi-autonomous Mobile Robots for Surveying of Disaster Area and Gathering of Information in Nuclear Power Station" conducted in FY2019.

JAEA Reports

Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-040, 55 Pages, 2021/01

JAEA-Review-2020-040.pdf:3.95MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Challenge to Investigation of Fuel Debris in RPV by an Advanced Super Dragon Articulated Robot Arm" conducted in FY2019.

Journal Articles

Automatic data acquisition for visualizing radioactive substances by combining a gamma-ray imager and an autonomous mobile robot

Sato, Yuki; Minemoto, Kojiro*; Nemoto, Makoto*; Torii, Tatsuo

Journal of Instrumentation (Internet), 16(1), p.P01020_1 - P01020_18, 2021/01

 Times Cited Count:0 Percentile:0(Instruments & Instrumentation)

JAEA Reports

Semi-autonomous remote-control technology of an articulated mobile robot to recover from stuck states (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*

JAEA-Review 2020-025, 34 Pages, 2020/12

JAEA-Review-2020-025.pdf:2.73MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semiautonomous Remote-control Technology of an Articulated Mobile Robot to Recover from Stuck States". The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method. Finally, the effectiveness of them is demonstrated by experiments using an actual robot.

JAEA Reports

Design and produce training-way system for crawler-type robots against nuclear emergency of JAEA facilities

Tsubaki, Hirohiko; Koizumi, Satoshi*

JAEA-Technology 2020-016, 16 Pages, 2020/11

JAEA-Technology-2020-016.pdf:2.96MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of JAEA deal with Act on Special Measures Concerning Nuclear Emergency Preparedness. The section needs to train operators from every nuclear facility in JAEA to control crawler-type robots, and so on. A driving training of a crawler-type robot used a reciprocating passage (U-shaped passage look from above) is one of the important training programs. The section always assembled a reciprocating passage with borrowed parts from other sections for every training of being used the passage. The section designed and produced training-way system included a reciprocating passage with stairs in 2019 fiscal year. The system makes the section members labor-saving, possible to set any time for training and diverse training-ways with easy assembling system. This report shows design and produce training-way system for crawler-type robots against nuclear emergency of JAEA facilities by Maintenance and Operation Section for Remote Control Equipment.

JAEA Reports

Design and mounting advanced wireless communication equipment on the crawler-type robots for tasks and on the crawler-type scouting robot

Nishiyama, Yutaka; Iwai, Masaki; Tsubaki, Hirohiko; Chiba, Yusuke; Hayasaka, Toshiro*; Ono, Hayato*; Hanyu, Toshinori*

JAEA-Technology 2020-006, 26 Pages, 2020/08

JAEA-Technology-2020-006.pdf:2.43MB

Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of JAEA deal with Act on Special Measures Concerning Nuclear Emergency Preparedness. The section needs to remodel crawler-type robots for tasks, crawler-type scouting robots, and so on. About two crawler-type robots for tasks, the section designed and mounted advanced wireless communication equipment on manipulators mounted on the two robots. The crawler part of the robot has been able to be controlled by way of the new equipment, and when it is broken down, it can be changed by way of an original equipment. And the new equipment makes a single relay robot controllable both the crawler part and the manipulator part of the robot, in case of wireless relay robots being needed. And after checking the ability and characteristic about 5 wireless communication equipment, the section chose and mounted the best equipment on one crawler-type scouting robot. This report shows design and mounting advanced wireless communication equipment on the two crawler-type robots for tasks and on the one crawler-type scouting robot.

JAEA Reports

Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station (Contract research); FY2018 center of world intelligence project for nuclear science/technology and human resource development

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Polytechnic University*

JAEA-Review 2019-022, 35 Pages, 2020/01

JAEA-Review-2019-022.pdf:2.71MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the Development of Semantic Survey Map Building System Using Semi-autonomous Mobile Robots for Surveying of Disaster Area and Gathering of Information in Nuclear Power Station. The objective of the present study is to research and develop semi-autonomous mobile robot systems (multi-sensor fusion system, semantic simultaneous localization and mapping (SLAM), system for traversable-route learning and safe traversable-route presentation, etc.) that simply, safely, and rapidly make semantic survey maps including multiple information (air dose rate, temperature, obstacles, etc.). The system will be applied to the investigation of the situation inside the building of the nuclear power station where people cannot access at the time of disaster.

Journal Articles

Track3; Robot technology, remote control system

Kawabata, Kuniaki; Osumi, Hisashi*; Onishi, Ken*

Nihon Kikai Gakkai-Shi, 122(1211), p.16 - 17, 2019/10

no abstracts in English

Journal Articles

Designing test methods for running capabilities of ground robots for nuclear disaster response

Kawabata, Kuniaki; Yamada, Taichi; Shirasaki, Norihito; Ishiyama, Hiroki

Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2019) (USB Flash Drive), p.559 - 564, 2019/07

Journal Articles

Development of a robot simulator for remote operations for nuclear decommissioning

Kawabata, Kuniaki; Suzuki, Kenta

Proceedings of 16th International Conference on Ubiquitous Robots (UR 2019) (USB Flash Drive), p.501 - 504, 2019/06

Journal Articles

Contribution by incorporation of laser technology and robotics technology for Fukushima Daiichi Nuclear Power Plants decommissioning

Kawatsuma, Shinji

Reza Kenkyu, 45(7), p.413 - 417, 2017/07

Inside and surrounding area of reactor buildings of Fukushima Daiichi Nuclear Power Plants became high radiation condition because of radioactive materials release by the accidents caused by earthquake of Pacific coast on eastern and northern Japan. In the stage of emergency response to the accidents, more than 20 robots had been deployed, and some of them had equipped with laser technologies like as laser range finder. In the following decommissioning stage of the plans, operations under higher radiation condition will be required, so that varied laser technologies will be needed to fuse with robot technologies. Laser checker laser analysis would be expected besides laser range finder. However those technologies will be deployed under higher radiation condition, so radiation hardening and control stabilizing should be solved.

Journal Articles

Unitization for portability of emergency response surveillance robot system; Experiences and lessons learned from the deployment of the JAEA-3 emergency response robot at the Fukushima Daiichi Nuclear Power Plants

Kawatsuma, Shinji; Mimura, Ryuji; Asama, Hajime*

ROBOMECH Journal (Internet), 4, p.6_1 - 6_7, 2017/02

It was cleared that portability of emergency response reconnaissance robot had been very important. So, RESQ-A robots, which had been developed by Japan Atomic Energy Research Institute (present Japan Atomic Energy Agency), had been considered from the view point of portability. After Fukushima Daiichi NPPs' accidents occurred, JAEA had modified a RESQ-A robot to JAEA-3 robot in order to meet the anticipated situation of the accidents. However, actual situation was beyond the anticipated situation, and additional modification was required. The actual confused situation was many rubble were scattered and temporary cables and hoses were constructed in the reactor buildings, so that reconnaissance robots should be conveyed by operators through limited route, should be reassembled in short time and should be able to remove cable and tiers for reduce the operators' exposure dose during maintenance. JAEA modified again JAEA-3 robot system, with cooperation of operators from Fukushima Daiichi NPPs. It was lesson learned that emergency response reconnaissance robot needed to be unitized for portability, and "Unitization Policy for emergency response reconnaissance robot" was developed.

Journal Articles

A Trajectory generation method for mobile robot based on iterative extension-like process

Kawabata, Kuniaki

Artificial Life and Robotics, 21(4), p.500 - 509, 2016/12

In this paper, we propose a trajectory generation method for mobile robot based on iterative extension-like process. Due to use mobile robots in the real world, trajectory generation must be done depending on the faced situation on each occasion. Proposed method enables online iterative trajectory extension process based on a low-order polynomial curve named as trajectory segment. The waypoints on the existing trajectory segment and a waypoint designated every fixed interval are the constraints to trigger the trajectory extension. For maintaining the smooth continuity of the trajectory, the velocity state must be sustained at the connecting point. Resultantly, the trajectory segments are organized into a single smooth trajectory.

Journal Articles

Statistical laser-scanner measurement model for mobile robot localization in human living environment

Yamada, Taichi; Oya, Akihisa*

Keisoku Jido Seigyo Gakkai Rombunshu, 52(12), p.661 - 670, 2016/12

This paper introduces a laser-scanner measurement model using the statistic of laser-scanner data collected in advance for a mobile robot localization. In autonomous navigation, robots usually run based on self position in a map, and laser-scanners are useful sensors for localization. However, in human living environments like urban areas and parks, laser-scanner data is unstable due to moving objects and natural objects, and it is difficult to obtain landmarks like fixed objects. Therefore, our method make a map using statistics of laser-scanner data and calculates the laser-scanner measurement model based on the statistics. Our method is applied to Monte Carlo localization/particlelter. Because the map makes possible to use the frequency and distribution of laser-scanner data for localization, our method allows a robust localization for unstable laser scanner data. In extensive experiments, our method presented an accurate localization and a robot using our method ran stably in actual sidewalks.

Journal Articles

Maintaining formation of multiple robotic wheelchairs for smooth communication

Suzuki, Ryota*; Kobayashi, Yoshinori*; Kuno, Yoshinori*; Yamada, Taichi; Yamazaki, Keiichi*; Yamazaki, Akiko*

International Journal on Artificial Intelligence Tools, 25(5), p.1640005_1 - 1640005_19, 2016/10

 Times Cited Count:1 Percentile:12.53(Computer Science, Artificial Intelligence)

To meet the demands of an aging society, research on intelligent/robotic wheelchairs have been receiving a lot of attention. In elderly care facilities, care workers are required to communicate with the elderly in order to maintain both their mental and physical health. While this is regarded as important, having a conversation with someone on a wheelchair while pushing it from behind in a traditional setting would interfere with their smooth and natural conversation. So we are developing a robotic wheelchair system which allows companions and wheelchair users to move in a natural formation. This paper reports on an investigation to learn the patterns of human behavior when the wheelchair users and their companions communicate while walking together. The ethnographic observation reveals a natural formation of positioning for both companions and wheelchair users. Based on this investigation, we propose a multiple robotic wheelchair system which can maintain desirable formations for communication between wheelchairs.

Journal Articles

Radiation tolerance and management method of Robots and unmanned heavy construction machines using semiconductors on the shelf

Kawatsuma, Shinji; Asama, Hajime*

Nihon Robotto Gakkai-Shi, 34(8), p.552 - 557, 2016/10

There was not a guideline available for researchers, developers or users for robots or heavy construction machines on the evaluation of radiation tolerance and management method of robots and heavy construction machines using semiconductors, like as CPUs on the shelf, under radiation condition, when Fukushima Daiichi NPPs accidents occurred on March 11th, 2011. The evaluation and the management method became necessary, in order to deploy robots like as QUINCE developing for big city accidents or unmanned heavy construction machines for landside disaster. According to "radiation tolerance data base on parts or materials" developed in 1980's to 1990's by Japan Atomic Energy Agency (JAEA), a guideline, for robots and unmanned heavy construction machines, was tentatively developed.

Journal Articles

Intelligible seminar of fusion reactors, 10; Remote maintenance robot for in-vessel components, Advanced robot technology for handling large-heavy components with high positioning accuracy

Shibanuma, Kiyoshi

Nihon Genshiryoku Gakkai-Shi, 47(11), p.761 - 767, 2005/11

In-vessel components such as blanket and divertor of the fusion reactor are activated by neutron produced during fusion reaction. Gamma radiation will be about 500 MGy/h in maximum after fusion reaction. When the components are failed or troubled in the vessel, the maintenence has to be carried out by the robot because the human cannot be close inside the vessel. The required functions and present R&D status of the typical robots applied to ITER are introduced as examples of robots maintaining the in-vessel components of the fusion reactor.

Journal Articles

Remote operation by a radiation-proof robot

Oka, Kiyoshi

Kikai No Kenkyu, 57(6), p.641 - 649, 2005/06

no abstracts in English

80 (Records 1-20 displayed on this page)