Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Verzilov, Y. M.; 佐藤 聡; 落合 謙太郎; 和田 政行*; Klix, A.*; 西谷 健夫
Fusion Engineering and Design, 82(1), p.1 - 9, 2007/01
被引用回数:10 パーセンタイル:57.11(Nuclear Science & Technology)増殖ブランケット核特性実験に使用するベリリウムの核的特性の検証を目的として、ベリリウム体系の積分ベンチマーク実験を原子力機構FNSで実施した。直径628mm,厚さ355mmの疑似円柱体系に14MeV中性子を照射し、体系内に埋め込んだ炭酸リチウムペレットのトリチウム生成率を液体シンシレーションカウンタ法で測定した。実験結果は、中性子モンテカルロコードMCNP-4Cで解析した。なお中性子輸送用核データとしてはFENDL/MC-2.0及びJENDL-3.2/3.3、リチウムの反応率用にはJENDLドジメトリファイル及びENDF/B-VIを使用した。どの核データを使用した計算も、実験値と誤差10%以内で一致し、ベリリウムの核的特性に大きな問題はないことを確認した。
西谷 健夫; 山内 通則*; 西尾 敏; 和田 政行*
Fusion Engineering and Design, 81(8-14), p.1245 - 1249, 2006/02
被引用回数:13 パーセンタイル:64.80(Nuclear Science & Technology)低アスペクト比(アスペクト比2.3)のトカマクVECTORにおいて、超電導トロイダル磁場コイルの十分な遮蔽と1以上のトリチウム増殖比を確保することを目標に中性子工学設計を行った。増殖ブランケットとして自己冷役型LiPbブランケットを採用した場合、外側にLiPb自己冷役型ブランケットだけでは1以上のトリチウム増殖比は困難であるが、水素化バナジウムを主遮蔽材とする内側ブランケットに約13cm厚のLiPb層を追加することにより、内側超電導トロイダル磁場コイルの遮蔽と、1以上のトリチウム増殖比を同時に満足できることを示した。
山内 通則*; 西谷 健夫; 西尾 敏
電気学会論文誌,A, 125(11), p.943 - 946, 2005/11
内側トロイダル磁場コイルに超伝導を用いた低アスペクト比トカマク炉を実現するために、中性子工学の観点から遮蔽体やトリチウム増殖ブランケットの設計条件を検討した。炉の形状を考慮するとトーラス内側は超伝導コイルの遮蔽専用、トーラス外側はトリチウムの増殖を主たる機能に特化するのが有利と考え、内側遮蔽体には先進的な遮蔽材を採用して最適な組成とコイル遮蔽に必要な遮蔽厚さを評価した。また外側には、先進的なトリチウム増殖材を用いて、増殖比を最大にするために最適なブランケットの組成や構造を検討した。さらに、アスペクト比に対するトリチウム増殖比の変化を求め、アスペクト比が22.5程度の幾つかのブランケット構造に対するトリチウム増殖比とそれらを1.1以上にするための条件を明らかにした。
Verzilov, Y. M.; 落合 謙太郎; 西谷 健夫
Fusion Science and Technology, 48(1), p.650 - 653, 2005/07
被引用回数:7 パーセンタイル:44.15(Nuclear Science & Technology)ブランケット設計のための核特性実験においては、トリチウム生成率の精度を確認することが必要である。実験体系はブランケットの設計にしたがって、できるだけ忠実に模擬した多層体系が必要であり、その中のトリチウム生成率分布を測定する手法は、感度と位置分解能が大きく、かつ中性子場を乱さないことが重要である。トリチウム生成率の精度検証のためにはトリチウム生成率を直接測定することが必要である。ここでは炭酸リチウムの粉末を圧縮したぺレットをトリチウム増殖層の埋め込み、照射後、ペレットを酸で溶解し、中和後液体シンチレーション法で測定する。2Bq/gのトリチウム生成量で測定誤差5%が得られるが、FNSでは8時間以上の照射が必要となる。間接的測定法はパラメータサーベイ的な実験に便利である。もしリチウムと同じようなエネルギー応答関数を持つ放射化反応があれば、リチウムペレットの代用として使用できる。そこでLiのトリチウム生成反応に対し
P(n,
)
P、
Liのトリチウム生成反応に対し
S(n,p)
Pに着目し、ぺレットとしてNH
PH
O
.とCH
SO
CH
を採用した。これらを用いることにより、リチウムのぺレットの1/100の照射事件で十分な計数を得られることを明らかにした。
Verzilov, Y. M.; 落合 謙太郎; Klix, A.; 佐藤 聡; 和田 政行*; 山内 通則*; 西谷 健夫
Journal of Nuclear Materials, 329-333(Part2), p.1337 - 1341, 2004/08
被引用回数:4 パーセンタイル:28.83(Materials Science, Multidisciplinary)これまで濃縮チタン酸リチウム,ベリリウム及び低放射化フェライト鋼F82Hから構成された多層ブランケット模擬体系に対して14MeV中性子源FNSを用いた核特性系積分実験を実施してきたが、実測されたトリチウムの生成率はモンテカルロ中性子輸送計算コードMCNPと核データJENDL-3.2による計算値よりトリチウム増殖層平均で20%小さかった。その主要な原因として、ベリリウム中の微量不純物(B, Li, Gd等)が寄与していると考察し、FNSを用いて中性子透過実験を行い、実験的評価を行った。大きさの異なるベリリウム単体の体系にパルス状DT中性子を入射し、BF3中性子検出器により、熱中性子束の減衰時間を測定した。全ての試験体で、測定した熱中性子の減衰時間は計算値より早かった。これはベリリウム中の微量不純物により熱中性子束が吸収されるためと考えられる。熱中性子の減衰時間から実行的な吸収断面積を評価した結果、核データから評価した断面積より30%大きな値が得られた。不純物の主要成分を検討し、トリチウム増殖率への影響を評価している。
Verzilov, Y. M.; 落合 謙太郎; 佐藤 聡; 和田 政行*; 山内 通則*; 西谷 健夫
JAERI-Research 2004-005, 30 Pages, 2004/03
ほとんどの核融合炉の概念設計において、ブランケットにおける中性子増倍材としてベリリウムの利用が提案されている。その核融合炉のトリチウム増殖比やベリリウムの放射化と核変換の評価においてはベリリウムの詳細な化学組成が必要である。本報告ではトリチウム増殖比の評価に関連する詳細な不純物分析に特に注目した。ここでは2つの異なった方法で不純物を調べた。1つはICP質量分析法による一部の試料の分析であり、もう1つはパルス化中性子を用いたベリリウム体系の積分的分析である。特に後者はLiによるトリチウム生成に対するベリリウム中の不純物の積分的効果の最も有効な分析法として提案した。D-T中性子のパルスをベリリウム体系に入射し、その後の熱中性子密度の時間変化を観測することにより積分的効果を評価した。本研究では構造材級ベリリウムを使用した。この不純物の影響は寄生的な中性子の吸収により実験で得られた
Liによるトリチウム生成の反応率を減少させる。核データセットJENDL-3.2を用いたMCNPモンテカルロ計算と実験値を比較した結果、測定された吸収断面積は製作会社の特性値から評価した値より約30%大きくなった。ベリリウム中のLi, B, Cd等の不純物はたとえ10ppm以下でも吸収断面積に影響する。
古作 泰雄; 黒田 敏公*; 榎枝 幹男; 秦野 歳久; 佐藤 聡; 佐藤 真一*; 大崎 敏雄*; 三木 信晴*; 秋場 真人
JAERI-Tech 2003-058, 69 Pages, 2003/06
ITERの増殖ブランケット設計は、中性子増倍材微小球充填層中にトリチウム増殖材微小球の管状充填層(BIT)を置く構造を採用している。設計は、遮蔽ブランケットと同一のモジュール支持構造と冷却マニフォールドを使用することを仮定したものである。本研究では、微小球充填層型増殖ブランケットに特有の設計課題である、トリチウム増殖性能核解析,トリチウム放出挙動解析,ペブル充填層を考慮した熱機械特性解析を実施し、設計が妥当であることを明らかにした。
核融合炉研究委員会; 核融合材料研究委員会
JAERI-Review 2003-015, 123 Pages, 2003/05
拡大核融合炉・材料合同研究委員会が、2002年7月12日に東京で開催された。この合同研究委員会では、原研及び大学におけるブランケット,材料及び国際核融合材料照射施設(IFMIF)の開発計画と開発の現状に関する報告が行われるとともに、今後の原研と大学の協力に関する議論が行われた。本報告書は、合同委員会で用いられた資料及びその纏めから構成されている。
核融合炉研究委員会; 核融合材料研究委員会
JAERI-Review 2002-008, 79 Pages, 2002/03
拡大核融合炉・材料研究合同委員会が、2001年7月16日に、東京で開催された。この合同委員会では、原研及び大学におけるブランケット、材料及び国際核融合材料照射施設(IFMIF)の開発計画と開発の現状に関する報告が行われるとともに、今後の原研と大学の協力に関する議論が行われた。本報告書は、本合同委員会で用いられた資料及びそのまとめから構成されている。
榎枝 幹男; 小原 祥裕; 秋場 真人; 佐藤 聡; 秦野 歳久; 古作 泰雄; 黒田 敏公*; 菊池 茂人*; 柳 義彦*; 小西 哲之; et al.
JAERI-Tech 2001-078, 120 Pages, 2001/12
本報告書は、経済的競争力の強化と技術的な堅実さの維持を両立する原型炉ブランケットの概念構築を目的として行われた平成12年度の原型炉ブランケット設計会議での作業内容をとりまとめたものである。平成11年度の核融合会議戦略検討分科会の議論等から、原型炉の果たすべき使命に関して見直しがなされ、経済的な競合性を有する実用炉の原型であり、それと同じ材料と設計を使用して商業的に魅力ある動力炉の原型であるから、原型炉で、実用化に必要な技術はすべて開発し実証する、と結論付けられた。この見直しを受けて、過去数年にわたるプラズマ研究や炉工学技術開発の進展を勘案して、開発目標として再設定をし、原型炉としてA-SSTRで提案された超臨界水冷却方式の固体増殖ブランケットを目標とし、その概念検討を行った。本概念検討の結果、除熱,発電,燃料増殖,遮蔽などの基本的な性能に関して、超臨界水冷却固体増殖ブランケットの実現可能性が示された。また、電磁力に関する検討,超臨界水による腐食防止に関する予備調査,トリチウム生成挙動と回収方式の検討,冷却発電システムの検討,モジュール製作性の検討,遠隔保守着脱機構,交換計画の検討などを行い、今後解決するべき検討課題を明らかにした。
長尾 美春; 中道 勝; 河村 弘
Journal of Nuclear Science and Technology, 37(Suppl.1), p.423 - 426, 2000/03
核融合実験炉の運転形態の一つにパルス運転モードがある。この運転形態におけるトリチウム増殖ブランケットの工学的データ(熱特性、トリチウム放出特性等)は、ブランケットの設計に必要不可欠なことから、核分裂炉においてパルス運転を模擬した照射試験を行うための試験体の設計を行った。この試験体では、窓付のハフニウム製の中性子吸収体を回転させることにより、パルス運転を模擬する。核設計に際しては、モンテカルロコードMCNPを使用し、試験体が実際に炉内に装荷された場合を想定した解析を行った。パルス運転モードにおける工学的データを得るためには、運転状態相当での熱中性子束が停止状態模擬時の少なくとも10倍以上あることが望ましいとされている。本核設計の結果から、パルス運転模擬時における試料部の熱中性子束の変化を約12:1にできることが明らかとなり、JMTRを用いた照射試験の見通しが得られた。
三浦 秀徳*; 佐藤 聡; 榎枝 幹男; 黒田 敏公*; 高津 英幸; 河村 繕範; 田中 知*
JAERI-Tech 97-051, 51 Pages, 1997/10
原型炉用ブランケットを対象としたITERでの工学試験用ブランケットシステムについて検討した。原型炉用ブランケットの試験はITERの主な工学目標のうちの1つである。テストモジュールにより、燃料自給のためのトリチウム増殖能力と発電用の熱回収機能の試験及び実証を行う。原型炉用プラズマとして、水冷却及びヘリウム冷却のセラミック増殖材ブランケットを取り上げ、これらのテストモジュールの核・熱設計、試験ポートへの設置概念検討、冷却系及びトリチウム回収系の設計を実施した。その結果、現ITER設計と整合のとれたテストモジュール及び補機系の設計が提示された。
三浦 秀徳*; 喜多村 和徳*; 伊藤 裕*; 高津 英幸; 黒田 敏公*; 佐藤 聡; 古谷 一幸; 秦野 歳久; 倉沢 利昌; 戸上 郁英*; et al.
Fusion Technology 1996, 0, p.1339 - 1342, 1997/00
国際熱核融合実験炉(ITER)の高性能段階(EPP)で装荷される増殖ブランケットの設計を日本ホームチームの提案するペブルベッド概念に基づいて実施した。その結果、基本性能段階(BPP)と同寸法のままで、PFコイルに対する遮蔽性能はGDRDの要求値を満足し、EPPでの運転に必要なトリチウムを確保するために要求されるトリチウム増殖比(TBR)0.8を達成できることが分かった。また構造解析においても、電磁力および熱応力値は、許容値以下に抑えられる見通しを得られた。
大山 幸夫; 今野 力; 池田 裕二郎; 前川 藤夫; 小迫 和明*; 中村 知夫; 前川 洋; M.Z.Youssef*; A.Kumar*; M.A.Abdou*; et al.
JAERI-M 94-015, 193 Pages, 1994/02
加速器型点状D-T中性子源を用いて疑似線状線源を実現した。この線源は連続的に動く点状線源を時間平均するか、細かく分布した点状線源を重ね合わせることで得られる。線源特性の測定を連続とステップの2つの運転モードに対して、放射化法とNE213検出器で行い、モンテカルロ法の計算と比較した。この線源を用いて3種の環状ブランケット体系:基準体系、黒鉛アーマー体系、大口径開口部体系について積分実験を行った。測定ではこの線状線源に適用するために新たな手法を開発した。ここで得られた実験データは実際のトカマク炉の設計計算の信頼度を調べるに適した、従来より高度なベンチマークデータを与える。
大山 幸夫
NCCニュース, 0(18), p.17 - 23, 1994/00
ブランケット内での中性子核反応を用いたトリチウム燃料の増殖再生はDT燃料を用いる核融合炉概念においてはその成立性に関わる重要課題である。工学的な設計においては核データ、計算手法、構造のモデル化などの問題が相乗的に関わっており、トリチウム増殖率等の炉パラメータの設計余裕度を設定するために計算精度を実験的に確認する必要がある。このため、日米協力としてFNSを用いて、中性子工学実験を1993年まで約10年間にわたって実施した。この中で核的シミュレーションによる工学実験技術及び測定法に進展をもたらし、設計手法の依存性を含めた核設計計算の安全余裕度の評価へと成果を得ることができた。本稿ではこの協力研究の成果を概説する。
大山 幸夫; 前川 洋; 日米協力研究グループ
日本原子力学会誌, 36(7), p.612 - 618, 1994/00
ブランケット内での中性子核反応を利用したトリチウム燃料の増殖再生はDT燃料を用いる核融合炉概念においては、その成立性に関わる重要課題である。工学的な設計においては、核データ、計算手法、構造のモデル化などの問題が相乗的に関わっており、トリチウム増殖比等の炉パラメータの設計余裕度を設定するためには、核設計計算の信頼性を実験的に確認することが必要である。このため日米核融合協力協定のもとにFNSを用いたブランケット中性子工学に関する協力研究が1984年から1993年まで続けられた。この計画によって核的模擬による工学実験技術及び核パラメータ測定法の大きな進展がもたらされ、設計手法を含めた核設計の安全係数の評価へと結実させられた。本稿では、これらの協力研究で得られた成果について紹介する。
中川 正幸; 小迫 和明*; 森 貴正; 大山 幸夫; 今野 力; 池田 裕二郎; 山口 誠哉*; 津田 孝一*; 前川 洋; 中村 知夫*; et al.
JAERI-M 92-183, 106 Pages, 1992/12
核融合中性子工学に関する原研/米国エネルギー省協力研究のフェイズIIC実験ではいくつかのブランケット設計にみられる実際的な非均質性をもつブランケットについての積分実験と計算解析が行われた。二つの配置、即ち酸化リチウムとベリリウムの多層系(BEO)および水冷却チャンネル(WCC)体系が採用された。実験の目的は非均質構造周辺てのトリチウム生成率等の予測精度を調べることで、MORSE-DDとMCNPコードが両体系に、DOT3.5/GRTONCLとDOT5.1/RUFFコードがWCC体系に適用された。BEO体系実験では領域別トリチウム生成率の測定値に対して、計算との比(C/E)が原研が0.95-1.05米国が0.98-0.9であり、これまでの実験の傾向と一致した。WCC体系実験ではリチウム6によるトリチウム生成率のC/Eが水冷却チャンネルの周辺で著しく変化した。NE213によって求めたリチウム7によるトリチウム生成率では米国が20-25%大きく、用いた両国の核データの差に原因がある。
森 清治*; 小林 武司*; 関 泰; 関 昌弘
FAPIG, 0(124), p.2 - 11, 1990/03
核融合炉のトリチウム増殖ブランケットの開発計画に反映するため、その開発に必要な手順と試験項目を明らかにした。さらに研究開発に必要な施設のうち、放射線場以外での炉外試験施設(高熱負荷試験、伝熱流動試験、製造技術開発、健全性試験)について予備的な概念設計を実施した。
喜多村 和憲; 飯田 浩正; 迫 淳
JAERI-M 82-025, 23 Pages, 1982/03
国内次期装置の一候補であるスィミングプール型トカマク炉の増殖ブランケットについて熱設計を行なった。ブランケットはチューブインシェルタイプとし、トリチウム増殖領域内LiO温度を400
C以上、1200
C以下に保つため、冷却管Li
O間にヘリウムガス層を設ける構造とした。又Li
O最適ヘリウムギャップおよび最適冷却ピッチを決定した。その結果、ヘリウムギャップは0.75mmとなり、冷却管ピッチは最内列で30mm、最外列で70mmとなった。