Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
松村 太伊知; 奥村 啓介; 坂本 雅洋; 寺島 顕一; Riyana E. S.; 近藤 千博*
Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02
被引用回数:0Retrieving objects with a small amount of fuel debris, such as a few grams, will begin soon at the Fukushima Daiichi Nuclear Power Station (1F) at the start of decommissioning. Objects retrieved from the primary containment vessel are not necessarily fuel debris; fuel debris is an object from which neutrons are emitted because it contains nuclear-fuel material. However, the characteristics of the neutrons emitted by fuel debris are unknown. Fuel debris was categorized into five types according to the elapsed time from the accident, burnup, and fuel type (UO or mixed oxide). The number and energy spectra of (
,
) and spontaneous fission neutrons emitted from 1 g of each fuel debris type were estimated using the SOURCES 4C code to obtain the neutron characteristics. The results showed that the average neutron energy is approximately 2.1 MeV, regardless of the type of fuel debris. However, the intensities of neutrons emitted from the fuel debris in 1F Units 2 and 3 varied by four orders of magnitude according to the fuel debris type.
徳永 翔; 堀口 洋徳; 中村 剛実
JAEA-Technology 2023-001, 37 Pages, 2023/05
研究用原子炉JRR-3の冷中性子源装置(Cold Neutron Source: CNS)は、原子炉内で発生した熱中性子を減速材容器内に貯留した液体水素により減速し、エネルギーの低い冷中性子に変換する装置である。CNSから発生した冷中性子は、中性子導管を用いて実験装置に輸送され、生命科学、高分子科学、環境科学等を中心とする多くの物性研究に利用されている。中性子科学における世界の研究用原子炉との競争力を維持するためには、冷中性子強度の改善は不可欠であり、新たな知見を取り入れた新型CNSの開発を進めている。現行のJRR-3のCNSの減速材容器は、水筒型のステンレス製容器を採用しており、材質及び形状の変更により冷中性子束の強度を向上させることが可能である。そのため、新型減速材容器の基本仕様は、材質を中性子吸収断面積の小さいアルミニウム合金に変更し、さらに、モンテカルロ計算コードMCNPを用いて最適化した容器形状に変更した。これらの仕様変更に伴い、発熱や伝熱の条件に変更が生じることから、熱流力設計上の成立性を確認するため、JRR-3のCNSについて自己平衡性、熱輸送限界及び耐熱・耐圧等について改めて評価を行った。本報告書は、新型減速材容器に関わる熱流力設計上の評価を実施し、その結果を纏めたものである。
J-PARCセンター
JAEA-Evaluation 2019-003, 52 Pages, 2019/06
日本原子力研究開発機構(以下、「原子力機構」という)は、「国の研究開発評価に関する大綱的指針」(平成28年12月21日内閣総理大臣決定)及びこの大綱的指針を受けて作成された「文部科学省における研究及び開発に関する評価指針」(平成29年4月1日文部科学大臣決定)、並びに原子力機構の「研究開発課題評価実施規程」(平成17年10月1日制定)等に基づき、平成31年3月1日に第3期中長期計画に対する中間評価をJ-PARC研究開発・評価委員会に諮問した。これを受けて、J-PARC研究開発・評価委員会は、委員会において定められた評価方法に従い、原子力機構から提出されたJ-PARC研究開発の実施に関する説明資料の検討及びJ-PARCセンター長並びにディビジョン長による口頭発表と質疑応答を実施した。本報告書は、J-PARC研究開発・評価委員会より提出された中間評価の内容をまとめるとともに、「評価結果(答申書)」を添付したものである。
池田 裕二郎; 清水 裕彦*
レーザー研究, 46(11), p.641 - 646, 2018/11
高出力レーザー開発に追随するように、高出力レーザー駆動の高強度中性子源が目覚ましく技術的進展を見せるなか、本論文では中性子ビーム応用の主要な要素である最先端の減速材システム及び中性子光学系をレビューした。モデレータについては、最先端システムの1つであるJ-PARCパルス中性子源で採用された概念を基本設計として述べる。また、高出力レーザー駆動システムの高輝度モデレータの候補概念の新たな方向性について示す。中性子光学系では、中性子ビーム特性を強化する新たなデバイスに関する最近の進展とともに、最も基本的な検討事項について主にレビューする。
山本 和喜; 熊田 博明; 岸 敏明; 鳥居 義也; 櫻井 良憲*; 古林 徹*
Proceedings of 11th World Congress on Neutron Capture Therapy (ISNCT-11) (CD-ROM), 15 Pages, 2004/10
JRR-4において熱外中性子を用いたホウ素中性子捕捉療法を実施するために、熱外中性子ビーム強度をAuの共鳴吸収ピーク(4.9eV)で放射化される反応率を用いて測定した。原子炉出力補正係数及び計算/実験(C/E)スケーリング係数は実際の照射実験とシミュレーションとを合わせるために不可欠である。初めに、最適な検出器位置はMCNPコードを用いて求めた。MCNP計算の結果はコリメータから20cm以上の距離に置いた時、コリメータに置かれた被照射体の影響は1%未満になることを示した。したがって、われわれは3つの金線モニターをセットするためのホルダーをコリメータから約70cm離れたビスマスブロックの近傍に設置した。2つのスケーリング係数はファントム内の熱中性子束と金線モニターの反応率を測定する較正実験において決定された。熱外中性子ビーム強度の較正技術は熱外中性子の医療照射に応用された。
甲斐 哲也; 原田 正英; 勅使河原 誠; 渡辺 昇; 池田 裕二郎
Nuclear Instruments and Methods in Physics Research A, 523(3), p.398 - 414, 2004/05
被引用回数:38 パーセンタイル:89.61(Instruments & Instrumentation)結合型水素モデレータの中性子性能を、パラ水素濃度,モデレータの厚さと高さ,プレモデレータの厚さを関数として評価した。100%パラ水素による厚い(120140 mm)モデレータが、高い15meV以下の時間-エネルギー積分強度とパルスピーク強度を得るという観点から最適であることがわかった。モデレータの中性子取出面における低エネルギー中性子強度分布より、プレモデレータ近辺の周縁部分の強度が中心部よりも高いことがわかった。この独特な分布から、プレモデレータに近いモデレータ周辺部の明るい部分を利用できるよう、モデレータと中性子取出面の設計が重要となることを示している。
物質・生命科学実験施設建設チーム
JAERI-Tech 2004-001, 1171 Pages, 2004/03
本報告書は、大強度陽子加速器計画(J-PARC)の物質生命科学実験施設(MLF)の機器製作の概念及び基本設計にかかわる平成14年度までの検討成果を技術設計書としてまとめたものである。第1章は、計画書に当たる建設の目的,目標,スケジュール,予算,体制についてまとめた。第2章以下に技術設計書に当たる、個々の機器の基本設計方針と検討内容を記述した。プロジェクトは日々新たな展開を見せ、本設計書段階からは相当詳細化され、あるいは、部分は変更されて製作設計として既に最終的な形として収束している機器もある。それらは、詳細技術設計書として近い将来、続報として報告する。
山崎 良成
Proceedings of 9th European Particle Accelerator Conference (EPAC 2004), p.1351 - 1353, 2004/00
J-PARCは原研東海に建設中である。2006年末までにビーム試運転が始まる予定であるが、その前にKEKで2003年からリニアック最上流部のビーム試運転が始まっている。3MeVのRFQリニアックに続く3個のDTLタンクのうちの第1タンクで30mAのピーク電流の負水素イオンを20MeVまで加速した。J-PARC加速器の現況を報告する。
高田 弘; 前川 藤夫; 本村 士郎*; 吉田 勝彦*; 寺奥 拓史*; 明午 伸一郎; 坂井 昭夫*; 春日井 好己; 兼近 修二*; 大竹 秀範*; et al.
Proceedings of ICANS-XVI, Volume 3, p.1115 - 1125, 2003/07
大強度陽子加速器計画で建設する1MW核破砕中性子源はヘリウムベッセル,ベッセルサポートシリンダ,遮蔽ブロック,23本の中性子ビームライン,陽子ビーム窓等の機器で構成される。機器はライナーの内側に配置され、ヘリウムベッセルを中心とし、その周囲を中性子ビームシャッターを含む鉄鋼製の遮蔽で取り囲む。鉄遮蔽の外周には重コンクリートを配置し、その外表面の線量率が12.5Sv/hを超えないことを設計条件とした。ライナーの外形は直径9.8mであり、重コンの厚さは2.2-2.7mである。ライナー内は遮蔽体の除熱とNOxガスの発生抑制のため乾燥空気を循環させる。このようなステーション構造の概要と機器構造の各論、例えば中性子ビームシャッターは2本ロッド懸垂方式の直方体状で、その一部にガイド管等を装着したダクトを挿入できる構造であること、について報告する。
山崎 良成
Proceedings of 2003 Particle Accelerator Conference (PAC 2003) (CD-ROM), p.576 - 580, 2003/00
今、J-PARCと名称が決まった原研KEK大強度陽子加速器統合計画は400MeVのリニアック、3GeVで25Hzの速い繰り返しのシンクロトロン(RCS),50GeVの主シンクロトロン(MR)から成る。MW級のパルス核破砕中性子源として、蓄積リングを使うSNSやESSと対照的にJ-PARCではRCSを使用している。この方式は、主として数10GeVの陽子加速を行うために、そのブースターとしてRCSを選んだのであるが、それ自体、蓄積リング方式よりも幾つかの長所を持っている。低エネルギービーム輸送系(LEBT),3MeVのRFQリニアック,中間エネルギービーム輸送系(MEBT)のビーム試験を行った。そこでは、LEBTに前置チョッパーが、MEBTにチョッパーが装着されている。このチョッパー系はJ-PARCに独自に開発されたものであり、SNSとの比較は比較は興味深い。
原田 正英; 勅使河原 誠; 甲斐 哲也; 坂田 英明*; 渡辺 昇; 池田 裕二郎
Journal of Nuclear Science and Technology, 39(8), p.827 - 837, 2002/08
被引用回数:19 パーセンタイル:74.08(Nuclear Science & Technology)非結合型(超臨界)水素モデレータについて、高い中性子性能を実現するために、デカップリングエネルギーを変えて、プリモデレータと反射体材質(鉛,ベリリウム,鉄,水銀)に関する最適化研究を行った。その結果、鉛反射体中で、最適化されたプリモデレータと、適切なデカップリングエネルギーの採用により、ベリリウム反射体を用いた場合より、高い中性子性能が得られることを示した。
大山 幸夫
Radioisotopes, 51(5), p.219 - 227, 2002/05
21世紀の科学技術を進める研究基盤施設として、現在、日本原子力研究所(原研)と高エネルギー加速器研究機構(KEK)とが共同で建設を進めている、大強度陽子加速器計画が建設に着手しようとしている。この計画は、3段階のエネルギーに加速された陽子を使って多分野にわたって利用される多目的研究施設である。この中でも特に、大強度パルス中性子源施設は年間延べ数千人にのぼる多くのユーザーを抱える施設であり、そこでは物質・生命科学の多様な研究が行われることが期待される。本施設の完成時には、パルス中性子源も含めて各研究施設では世界第一級の性能の実験設備が完成する。本稿では、大強度パルス中性子源の概要、そしてそこで期待される中性子の利用研究について紹介する。
前川 藤夫; 勅使河原 誠; 高田 弘; 古坂 道弘*; 渡辺 昇
JAERI-Tech 2002-035, 68 Pages, 2002/03
原研-KEKの大強度陽子加速器計画の物質・生命科学実験施設として、3GeV-1MWの陽子ビーム駆動による核破砕中性子源の建設が計画されている。本レポートは、放射線安全性及び建設コストの観点から重要な、中性子源周りの生体遮蔽体のバルク遮蔽性能について、モンテカルロ計算手法を用いた検討を行った結果についてまとめたものである。予備的検討や他の機器との関連から適当と考えられる遮蔽構造を標準ケースとして設定し、目標線量とした1Sv/hを達成できる遮蔽厚さを計算した。また、材料、寸法等の様々な計算条件を変化させた計算を行い、計算条件が遮蔽性能に与える影響について調べた。これらの計算結果及び設計裕度を考慮し、最も適当であると考えられる遮蔽構造を最終的に以下のように決定した。線源の中心から4.8mまでを鉄遮蔽とし、その周囲は重コンクリート遮蔽で囲む。重コンクリート遮蔽は、陽子ビーム入射軸に対して105度よりも後方は中心から6.4mまで、105度から前方に向けて厚さを徐々に増加させ、最前方では中心から8.0mである。
山内 通則*; 西谷 健夫; 落合 謙太郎; 森本 裕一*; 堀 順一; 海老澤 克之*; 河西 敏
JAERI-Tech 2002-032, 41 Pages, 2002/03
ITER(ITER-FEAT)真空容器内の中性子モニターの開発を目的として、12mgの二酸化ウランを用いたマイクロフィッションチェンバーとウランのないダミーチェンバーを製作し、性能試験を行った。基本性能として、MIケーブルを取り付けたダミーチェンバーの真空リーク率、チェンバー内の導体と外側容器の絶縁性能、50Gまでの加速度に対する耐性はいずれも設計要求条件を満たした。線に対する感度試験は日本原子力研究所高崎研究所の
Coガンマ線照射装置によって行った。それによれば、ITER-FEATブランケット背後の環境で、
線に対する感度は中性子に対する感度の0.1%以下と評価できた。また14MeV中性子に対する検出器の応答は東海研究所の核融合中性子源(FNS)によって試験した。その結果、20
(室温)から250
までの範囲で計数率と中性子束の良好な直線性が確認できた。遮蔽体がある場合の検出器応答は遮蔽ブランケットの模擬体を用いて試験を行い、MCNP計算の結果と良く一致したデータが得られた。それによると中性子の減速により検出器の感度は上昇するが、遮蔽体の変動による感度の変化は小さい。結論として、本マイクロフィッションチェンバーはITER-FEATの中性子モニターとして充分な性能を有することがわかった。
甲斐 哲也; 勅使河原 誠; 渡辺 昇; 原田 正英; 坂田 英明*; 池田 裕二郎
Journal of Nuclear Science and Technology, 39(2), p.120 - 128, 2002/02
被引用回数:13 パーセンタイル:62.59(Nuclear Science & Technology)高い積分強度の冷中性子ビームに対する利用者からの要求が大きいため、2つの取り出し面を確保し、できるだけ多くのビームラインを配置できるよう結合型液体水素モデレータの設計検討を行っている。本研究では、これまで提案してきた背中にプリモデレータを共有する2つのモデレータを、より単純化した拡張型プレモデレータ付き単一のモデレータを提案し、さまざまな視点(モデレータ厚さ,プレモデレータ拡張寸法,反射体材料,パルス特性,等)からの最適化を行った。その結果、これまでの中性子強度と遜色なく、パルス特性が改善され、また工学的熱負荷を低減できることが示された。この結果は、統合計画の冷中性子モデレータ設計に反映させることとした。
原田 正英; 勅使河原 誠; 甲斐 哲也; 坂田 英明*; 渡辺 昇; 池田 裕二郎
JAERI-Research 2001-016, 32 Pages, 2001/03
高性能な非結合型水素モデレータの設計のために、プリモデレータ、反射体材質の選択、ライナー長さの最適化に関する検討を行った。中性子工学計算には、NMTC/JAMコード及びMCNP-4Cコードを用いた。結果から、鉛反射体下では、デカップリングエネルギー、プレモデレータの形状及び厚さを調整することにより、ベリリウム反射体下でパルス特性を凌駕することが可能であることが示された。反射体材質の選択では、鉛反射体や水銀反射体では、プリモデレータの利用により、中性子強度が増加することやモデレータ内核発熱が軽減することが示された。また、軽水プリモデレータを使用すると、パルステールが小さくなるが、重水プリモデレータを使用するとピーク強度が大きくなることも示された。中性子工学の観点から、最小のライナー長さが得られた。
大山 幸夫; 池田 進*; 日本原子力研究所・高エネルギー加速器研究機構共同推進チーム
JAERI-Conf 2001-002, p.19 - 26, 2001/03
日本原子力研究所と高エネルギー加速器研究機構とが共同で進める大強度陽子加速器計画の中の最も重要な施設が核破砕中性子源施設である。この施設の設計現状について報告する。施設は、ターゲット・減速材・反射材(TMR)システム,遮蔽体・ビームシャッター,陽子・中性子ビームライン及び計測器を配置する。TMRシステムについては高エネルギー輸送計算により形状配置の最適化を行った。熱除去系,保守構造,安全設計についてもR&Dを含め、かなり進んでおり、来年には詳細設計を行う。また、計測器の検討についても日本全国の研究者を組織して検討を行っている。
大山 幸夫
日本原子力学会モンテカルロ法による粒子シミュレーションの現状と課題, p.183 - 191, 2001/01
原研及び高エネルギー加速器研究機構(KEK)は共同して大強度陽子加速器計画施設の建設を進めている。本計画は、600MeV陽子リニアック,3GeV及び50GeV陽子シンクロトロン加速器群により作り出される陽子ビームを用いて、核変換実験施設,物質・生命科学実験施設(ミュオン実験施設,中性子散乱実験施設),原子核素粒子実験施設,ニュートリノ実験施設の建設を目指している。物質・生命科学実験施設における中性子利用では、減速した熱・冷中性子を用いた飛行時間法による広いQ-W領域における中性子散乱による物性研究・構造生物学研究、また、ミュオン実験では、mSR等ミュオンをプローブとして用いた物性研究等が計画されている。原子核・素粒子実験施設では、K中間子,中間子等の2次ビームを用いて極限状態の原子核やストレンジネスを持つ原子核の研究が行われる。ニュートリノ実験では、現在つくばで行われているK2K実験より百倍強度の高いニュートリノを用いてニュートリノ振動や混合状態の精密測定が期待されている。核変換実験施設では、物理実験施設を用いて未臨界炉心の炉特性実験や制御実験を行うとともに、工学実験施設でターゲット・構造材料に関する照射実験や液体ターゲットシステムの実証試験を行う。
原田 正英; 勅使河原 誠; 甲斐 哲也; 坂田 英明*; 渡辺 昇; 池田 裕二郎
JAERI-Research 2000-014, p.40 - 0, 2000/03
大強度核破砕中性子源において検討されている非結合型超臨界水素モデレータの高性能化を目指して、核的特性に関する検討を行った。計算には、NMTC/JAERI97コード及びMCNP4Bコードを用いた。計算の結果、平面型のプリモデレータをターゲットとモデレータの間に設置した場合は、中性子強度はプリモデレータ厚さ1.5cmで利得が最大になり、モデレータ内核発熱はプリモデレータ厚さ増加に従って単調に減少するとともに、パルスの時間半値幅はほとんど変わらないことが示された。これは、プリモデレータ導入が、今後の熱中性子モデレータの設計に有効であることを示す。また、プリモデレータをモデレータの周りに巻いて、中性子ビーム引き出し孔側に拡張すると、パルスの時間半値幅はほとんど変わらず、モデレータ内核発熱が軽減されることが示された。さらに、プリモデレータ厚さ1.5cm拡張長さ5cmで最大の中性子強度が得られることが示された。また、プリモデレータの反射体材質依存性として、鉛反射体の方が、ベリリウム反射体より、プリモデレータ効果が大きいことが示された。一方、ポイズンにより中性子特性が向上することが示されたが、MW級に核破砕中性子源では、ポイゾン中での発熱が膨大であることから、その使用は不可能であると結論された。デカップリングエネルギー依存性の計算結果から、デカップリングエネルギー1eVが、モデレータ特性にとって最適であることが示された。モデレータの厚さとモデレータの側面サイズ及び中性子引出し面サイズに関して検討を行った結果、モデレータサイズや中性子ビーム引出し面サイズは、それぞれ1212
5cm
、10
10cm
が最適であることが示された。以上の結果をもとに、基準非結合型水素モデレータモデルを提案した。
勅使河原 誠*; 渡辺 昇*; 高田 弘; 甲斐 哲也; 中島 宏; 永尾 忠司*; 大山 幸夫; 池田 裕二郎; 小迫 和明*
JAERI-Research 99-020, 33 Pages, 1999/03
原研中性子科学研究計画で目指す5MW短パルス核破砕中性子源で提案されている基準ターゲット・モデレータ・反射体システムの性能評価を行うため、各種モデレータから得られる冷、熱及び熱外中性子強度に関するニュートロニクス計算を行った。陽子ビーム出力(MW)当たりの中性子強度は、最も関心の高い冷中性子の場合、他の計画中(SNS及びESS)の同規模の大強度中性子源と比較して高い効率で得られることがわかった。さらに、5MWの出力では、現存するILL強力中性子源の時間積分強度で1.5倍、ピーク強度で約80倍の強度を与える結果となった。また、基準系に対するターゲット形状/サイズの中性子強度に及ぼす影響を検討した。その結果、ターゲット形状の変化は、特にモデレータのない方向の増減は、中性子強度に大きな影響を及ぼさないことが示され、ターゲットの工学的な設計上の大きな裕度を与え得ることが明らかとなった。