検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Synthesis and formation process of Al$$_{2}$$CuH$$_{x}$$; A New class of interstitial aluminum-based alloy hydride

Al$$_{2}$$CuH$$_{x}$$の合成と生成過程; アルミニウム基合金の侵入型水素化物

齋藤 寛之; 高木 成幸*; 遠藤 成輝; 町田 晃彦; 青木 勝敏; 折茂 慎一*; 片山 芳則

Saito, Hiroyuki; Takagi, Shigeyuki*; Endo, Naruki; Machida, Akihiko; Aoki, Katsutoshi; Orimo, Shinichi*; Katayama, Yoshinori

Aluminum-based alloy hydride Al$$_{2}$$CuH$$_{x}$$ (x$$sim$$1) is synthesized by hydrogenating Al$$_{2}$$Cu alloy using high-temperature and high-pressure hydrogen atmosphere. Al$$_{8}$$Cu square antiprisms in Al$$_{2}$$Cu twist around the c axis of a tetragonal unit cell by hydrogenation. The twist enlarges the interstitial spaces for accommodating hydrogen atoms which align linearly parallel to the c axis in Al$$_{2}$$CuH$$_{x}$$. Thermodynamic stability of Al$$_{2}$$CuH$$_{x}$$ results from the balance of stabilization by H 1s and Al 3sp hybridization and destabilization owing to the Fermi-level lifting upon hydrogenation. The crystal and electronic structures of Al$$_{2}$$CuH$$_{x}$$ illustrate the formation of an interstitial hydride of aluminum-based alloy.

Access

:

- Accesses

InCites™

:

パーセンタイル:54.06

分野:Nanoscience & Nanotechnology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.