Radiation-quality-dependent bystander effects induced by the microbeams with different radiation sources
異なる放射線のマイクロビームで誘導された放射線質依存性バイスタンダー効果
鈴木 雅雄*; Autsavapromporn, N.*; 宇佐美 徳子*; 舟山 知夫; Plante, I.*; 横田 裕一郎; 武藤 泰子*; 鈴木 芳代; 池田 裕子; 服部 佑哉; 小林 克己*; 小林 泰彦; 村上 孝*
Suzuki, Masao*; Autsavapromporn, N.*; Usami, Noriko*; Funayama, Tomoo; Plante, I.*; Yokota, Yuichiro; Muto, Yasuko*; Suzuki, Michiyo; Ikeda, Hiroko; Hattori, Yuya; Kobayashi, Katsumi*; Kobayashi, Yasuhiko; Murakami, Takashi*
It is essentially important for evaluating risk such a low-dose-rate exposure as the accident of Fukushima Daiichi Nuclear Power Plants to examine bystander effects induced by low-LET electromagnetic radiations, such as X or rays. We have been studying the cellular responses in normal human fibroblasts by targeted cell nucleus irradiations with monochromatic X-ray microbeams (5.35 keV) produced by Photon Factory in High Energy Accelerator Research Organization. The results indicated that the bystander effect in cell- killing effect was observed in the targeted cell nucleus irradiation, not in the random irradiation containing both cell nucleus and cytoplasm by Poisson distribution. The results suggest that energy deposition in cytoplasm is an important role of inducing bystander effects in case of low-LET radiations. We have also been investigating high-LET-radiation induced bystander effects using the heavy-ion microbeams at Takasaki Ion Accelerators for Advanced Radiation Application in Japan Atomic Energy Agency. Only 0.04% of the total numbers of normal human fibroblasts were irradiated with C-ion (220 MeV), Ne-ion (260 MeV) and Ar-ion (460 MeV) microbeams collimated at 20 micro meter in diameter. Cell-killing effect and gene mutation at HPRT locus in the cells irradiated with C ions were higher beyond our expectations and returned the estimated values that only 0.04% of the total cells were irradiated when using the specific inhibitor of gap junctions. On the other hand, no induced biological effects were observed in Ne and Ar ions whether the inhibitor was applied or not. The result suggested that the C-ion microbeam was capable of inducing bystander cellular effects via gap junction mediated cell-cell communication. There is clear evidence that bystander cellular effects are dependent on radiation quality.