Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okuno, Hiroshi; Sato, Sohei; Kawakami, Takeshi; Yamamoto, Kazuya; Tanaka, Tadao
Journal of Radiation Protection and Research, 46(2), p.66 - 79, 2021/06
The nuclear accident at the Fukushima Daiichi Nuclear Power Station (NPS) of Tokyo Electric Power Company (TEPCO) was a typical one of the disastrous damages that induced evacuation of the residents around the NPS, which was triggered by the hugest earthquake and associated tsunami. This paper summarized early responses of the Japan Atomic Energy Agency (JAEA), especially of its Nuclear Emergency Assistance and Training Center (NEAT) to the off-site emergencies associated with the TEPCO's Fukushima Daiichi NPS. The paper addressed activities of emergency preparedness of the NEAT before 2011 in relevant to the TEPCO's Fukushima Daiichi NPS, the situation of the NEAT on March 11, 2011, and its early responses to the related off-site emergencies including those caused by the accident at the TEPCO's Fukushima Daiichi NPS. The paper also discussed issues associated with complex disasters.
Sakasai, Kaoru; Sato, Setsuo*; Seya, Tomohiro*; Nakamura, Tatsuya; To, Kentaro; Yamagishi, Hideshi*; Soyama, Kazuhiko; Yamazaki, Dai; Maruyama, Ryuji; Oku, Takayuki; et al.
Quantum Beam Science (Internet), 1(2), p.10_1 - 10_35, 2017/09
Neutron devices such as neutron detectors, optical devices including supermirror devices and He neutron spin filters, and choppers are successfully developed and installed at the Materials Life Science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC), Tokai, Japan. Four software components of MLF computational environment, instrument control, data acquisition, data analysis, and a database, have been developed and equipped at MLF. MLF also provides a wide variety of sample environment options including high and low temperatures, high magnetic fields, and high pressures. This paper describes the current status of neutron devices, computational and sample environments at MLF.
Shinohara, Takenao; Kai, Tetsuya; Oikawa, Kenichi; Segawa, Mariko; Harada, Masahide; Nakatani, Takeshi; Oi, Motoki; Aizawa, Kazuya; Sato, Hirotaka*; Kamiyama, Takashi*; et al.
Journal of Physics; Conference Series, 746, p.012007_1 - 012007_6, 2016/00
Times Cited Count:59 Percentile:99.80(Physics, Nuclear)no abstracts in English
Sato, Takeshi; Muto, Shigeo; Akiyama, Kiyomitsu; Aoki, Kazufumi; Okamoto, Akiko; Kawakami, Takeshi; Kume, Nobuhide; Nakanishi, Chika; Koie, Masahiro; Kawamata, Hiroyuki; et al.
JAEA-Review 2014-048, 69 Pages, 2015/02
JAEA was assigned as a designated public institution under the Disaster Countermeasures Basic Act and under the Armed Attack Situations Response Act. Based on these Acts, the JAEA has the responsibility of providing technical support to the national government and/or local governments in case of disaster responses or response in the event of a military attack, etc. In order to fulfill the tasks, the JAEA has established the Emergency Action Plan and the Civil Protection Action Plan. In case of a nuclear emergency, NEAT dispatches specialists of JAEA, supplies the national government and local governments with emergency equipment and materials, and gives technical advice and information. In normal time, NEAT provides various exercises and training courses concerning nuclear disaster prevention to those personnel taking an active part in emergency response institutions of the national and local governments, police, fire fighters, self-defense forces, etc. in addition to the JAEA itself. The NEAT also researches nuclear disaster preparedness and response, and cooperates with international organizations. In the FY2013, the NEAT accomplished the following tasks: (1) Technical support activities as a designated public institution in cooperation with the national and local governments, etc. (2) Human resource development, exercise and training of nuclear emergency response personnel for the national and local governments, etc. (3) Researches on nuclear disaster preparedness and response, and sending useful information (4) International contributions to Asian countries on nuclear disaster preparedness and response in collaboration with the international organizations
Sato, Takeshi; Muto, Shigeo; Okuno, Hiroshi; Katagiri, Hiromi; Akiyama, Kiyomitsu; Okamoto, Akiko; Koie, Masahiro; Ikeda, Takeshi; Nemotochi, Toshimasa; Saito, Toru; et al.
JAEA-Review 2013-046, 65 Pages, 2014/02
When a nuclear emergency occurs in Japan, the Japan Atomic Energy Agency (JAEA) has the responsibility of providing technical support to the National government, local governments, police, fire stations and nuclear operators etc., because the JAEA has been designated as the Designated Public Institution under the Basic Act on Disaster Control Measures and the Act on Response to Armed Attack Situations, etc.. The Nuclear Emergency Assistance and Training Center (NEAT) of JAEA provides a comprehensive range of technical support activities to an Off-Site Center in case of a nuclear emergency. Specifically, NEAT gives technical advice and information, dispatches specialists as required, and supplies the National Government and local governments with emergency equipments and materials. NEAT provides various exercise and training courses concerning nuclear disaster prevention to those personnel taking an active part in emergency response organizations at normal times. The tasks of NEAT, with its past experiences as a designated public institution including the responses to TEPCO's Fukushima Accident, have been shifted to technical supports to the national government for strengthening its abilities to emergency responses; the NEAT therefore focused on maintenance and operation of its functions, and strengthening its response abilities in cooperation with the national government. This annual report summarized these activities of JAEA/NEAT in the fiscal year 2012.
Nakanishi, Chika; Sato, Takeshi; Sato, Sohei; Nagai, Haruyasu; Kakefuda, Toyokazu; Katata, Genki; Tsuzuki, Katsunori; Ikeda, Takeshi; Okuno, Hiroshi; Yamamoto, Kazuya; et al.
JAEA-Technology 2013-030, 105 Pages, 2013/10
North Korea carried out the third nuclear test in February 2013. Due to the request of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Nuclear Emergency Assistance and Training Center (NEAT) and Nuclear Science and Engineering Directorate (NSED) of JAEA predicted the atmospheric dispersion of radionuclide by WSPEEDI-II for the purpose of contributing to the environmental monitoring plan. From February 12 to 22, they provided daily reports on the prediction to the MEXT and the Ministry of Defense. MEXT has published these reports on the website. Since April 2012, NEAT and NSED had prepared to predict by the framework for the prediction around the clock during 10months until February 2013. This report described this experience and pointed issues out on this system.
Sato, Sohei; Yamamoto, Kazuya
JAEA-Review 2013-015, 89 Pages, 2013/07
After the accident of TEPCO's Fukushima Dai-ichi Nuclear Power Station occurred on March 11, 2011, actions for controlling the accident and protective actions for the residents like evacuation were taken. In parallel with this, it has been developed to reform the nuclear regulatory systems and the emergency preparedness and response systems in Japan. Especially the Nuclear Regulation Authority's Nuclear Emergency Preparedness and Response Guidelines were adopted with the introducing the basic concepts and the criteria on the basis of the IAEA's safety standards and differed greatly from the prior guidelines. Thus the arrangement of emergency response systems, resources and the operational procedures will be developed complying with according to the guidelines in municipalities around the nuclear power station sites. This work attempts to provide a plain explanation as possible for the regional officials and emergency workers about the basic concepts of the new guidelines.
Katagiri, Hiromi; Okuno, Hiroshi; Okamoto, Akiko; Ikeda, Takeshi; Tamura, Kenichi; Nagakura, Tomohiro; Nakanishi, Chika; Yamamoto, Kazuya; Abe, Minako; Sato, Sohei; et al.
JAEA-Review 2012-033, 70 Pages, 2012/08
When a nuclear emergency occurs in Japan, JAEA has the responsibility of providing technical support to the National government, local governments, etc., by the Basic Law on Emergency Preparedness and the Basic Plan for Disaster Countermeasures. NEAT of JAEA gives technical advice and information, dispatch specialists as required, supplies with the National Government and local governments emergency equipment and materials. NEAT provides various lectures and training courses concerning nuclear disaster prevention for emergency response organizations at normal time. Concerning the assistance to the Accident of Fukushima No.1 Nuclear Power Station caused by the Great East Japan Earthquake on 11 March, 2011, JAEA assisted activities including environmental radiation monitoring, environmental radioactivity analyses, resident public consulting etc., with its the utmost effort. This annual report summarized these activities of NEAT in the fiscal year 2011.
Sato, Sohei; Yamamoto, Kazuya; Muto, Shigeo; Fukumoto, Masahiro; Katagiri, Hiromi
JAEA-Review 2011-049, 77 Pages, 2012/01
The Tohoku District-off the Pacific Ocean Earthquake occurred at 14:46 on March 11, 2011. Tsunami caused by the earthquake attacked the Fukushima Dai-ichi and Fukushima Dai-ni Nuclear Power Stations of Tokyo Electric Power Company and nuclear accidents involving release of radioactive material occurred. Since the earthquake, Nuclear Emergency Assistance and Training Center (NEAT) has served as a base of support activities conducted by Japan Atomic Energy Agency (JAEA). After nearly half a year has passed since the occurrence of the accident, we compiled the support activities of NEAT. NEAT's lessons learned and recommendations based on the experiences of support activities to the accident should be very helpful in considering the structure of nuclear emergency preparedness and response. We summarized them in this time. We hope that this report helps further developing nuclear emergency preparedness and response in the future.
Katagiri, Hiromi; Okuno, Hiroshi; Sawahata, Masayoshi; Ikeda, Takeshi; Sato, Sohei; Terakado, Naoya; Nagakura, Tomohiro; Nakanishi, Chika; Fukumoto, Masahiro; Yamamoto, Kazuya; et al.
JAEA-Review 2011-037, 66 Pages, 2011/12
When a Nuclear emergency occurs, Nuclear Emergency Assistance & Training Center (NEAT) of JAEA gives technical advice and information, dispatch specialists as required, supplies emergency equipment and materials to the National Government and local governments. NEAT provides various lectures and training courses concerning nuclear disaster prevention for those personnel taking an active part in emergency response organizations at normal time. NEAT also researches on nuclear disaster prevention and cooperates with international organizations. Concerning about the assistance to the Accident of Fukushima No.1 Nuclear Power Station caused by the Great East Japan Earthquake at 11 March, 2011, JAEA assisted activities including environmental radiation monitoring, environmental radioactivity analyses, resident public consulting etc., with its full scale effort. NEAT served as the center of these supporting activities of JAEA.
Kajimoto, Ryoichi; Nakamura, Mitsutaka; Inamura, Yasuhiro; Mizuno, Fumio; Nakajima, Kenji; Kawamura, Seiko; Yokoo, Tetsuya*; Nakatani, Takeshi; Maruyama, Ryuji; Soyama, Kazuhiko; et al.
Journal of the Physical Society of Japan, 80(Suppl.B), p.SB025_1 - SB025_6, 2011/01
Times Cited Count:114 Percentile:94.55(Physics, Multidisciplinary)Kanamori, Masashi; Shirakawa, Yusuke; Yamashita, Toshiyuki; Okuno, Hiroshi; Terunuma, Hiroshi; Ikeda, Takeshi; Sato, Sohei; Terakado, Naoya; Nagakura, Tomohiro; Fukumoto, Masahiro; et al.
JAEA-Review 2010-037, 60 Pages, 2010/09
When a nuclear emergency occurs in Japan, the Japan Atomic Energy Agency (JAEA) provides technical support to the National government, local governments, police, fire station and license holder etc. They are designated public organizations conforming to the basic law on emergency preparedness and the basic plan for disaster countermeasures. The Nuclear Emergency Assistance & Training Center (NEAT) of JAEA provides a comprehensive range of technical support activities to an off-site center in case of a nuclear emergency. Specifically, NEAT gives technical advice and information, provides for the dispatch of specialist as required, supplies emergency equipments and materials to the national government and municipal office. NEAT provide various lectures and training course concerning nuclear disaster prevention for those personnel taking an active part in emergency response organizations at normal time. And NEAT researches on nuclear disaster prevention and also cooperate with international organizations. This annual report summarized the activities of JAEA/NEAT in the fiscal year 2009.
; Yamada, Yuichi*; ; Ito.M*; ; ; Koizumi, Norikiyo; Ando, Toshinari; Matsui, Kunihiro; Sugimoto, Makoto; et al.
IEEE Transactions on Applied Superconductivity, 9(2), p.2688 - 2691, 1999/06
Times Cited Count:4 Percentile:36.16(Engineering, Electrical & Electronic)no abstracts in English
Sato, Isamu*; Arima, Tatsumi*; Idemitsu, Kazuya*; ; Namekawa, Takashi
JNC TY9400 99-003, 153 Pages, 1999/02
no abstracts in English
Sato, Isamu*; ; ; Arima, Tatsumi*;
PNC TY9606 98-003, 99 Pages, 1998/06
no abstracts in English
Sato, Isamu*; ; ; Arima, Tatsumi*; ; Kajitani, Yukio
PNC TY9606 97-001, 117 Pages, 1997/07
no abstracts in English
Sato, Isamu; Yamamoto, Kazuya; Kajitani, Mikio
PNC TN9410 96-251, 82 Pages, 1996/06
The O/M ratio of fuel is related with most of fuel properties, especially it is important to evaluate radial O/M ratio distribution of fuel irradiated to high burnup in order to predict change of the properties. In this work, the radial O/M ratio distribution of irradiated FBR fuels was measured and evaluated. The fuels are irradiated in "JOYO", which were irradiated to the highest burnup(ca. 13at%). In this study, an indirect method, REDOX of Mo was used to obtain radial O/M ratio distribution, in which oxygen potential in fuel was determined by measuring oxidation and reduction states of Mo existing as a fission product (FP) in fuel. Oxygen potential distribution in fuel was determined from temperature profile and measured Mo distribution in fuel. O/M ratio distribution in fuel was evaluated from the oxygen potential, based on Catlow theory. The obtained O/M ratio distribution in fuel was compared with one calculated using Aitken model, which explains oxygen migration in fuel. Consequently, it was shown that the oxygen migration mechanism in high burnup fuel might differ from one suggested by Aitken and it might be necessary to take into consideration the effect of burnup on heat oftransport in oxygen thermal diffusion.
Seki, Masami; Ikeda, Yoshitaka; ; Imai, Tsuyoshi; ; Yokokura, Kenji; Sawahata, Masayuki; Suganuma, Kazuaki; Sato, Minoru; ; et al.
Fusion Technology 1990, p.1060 - 1064, 1991/00
no abstracts in English
; Sato, Seiichi*; ; ; ; ; ; Yamamoto, Kazuya*
PNC TN841 85-25, 125 Pages, 1985/03
no abstracts in English