検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 52 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Effect of plastic constraint and cladding on semi-elliptical shaped crack in fracture toughness evaluation for a reactor pressure vessel steel

下平 昌樹; 飛田 徹; 名越 康人*; Lu, K.; 勝山 仁哉

Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 8 Pages, 2021/07

JEAC4206-2016における原子炉圧力容器の構造健全性評価では、材料の破壊靭性が、想定欠陥であるクラッド下半楕円亀裂の先端における応力拡大係数よりも高いことが求められている。しかしながら、破壊靭性試験片と想定亀裂の亀裂深さやクラッドの有無といった違いにより、塑性拘束状態や破壊靭性評価に影響を及ぼす可能性がある。本研究では、半楕円亀裂に対する拘束効果やクラッドが破壊靭性評価に及ぼす影響を調べるため、4点曲げ破壊靭性試験及び有限要素解析を実施した。その結果、半楕円亀裂最深点における見かけの破壊靭性がマスターカーブ法に基づく5%信頼下限を上回り、現行評価手法が保守性を有することを確認した。半楕円亀裂における破壊の起点は亀裂最深点だけでなく試験体表面近傍にも観察された。有限要素解析の結果、半楕円亀裂における塑性拘束は亀裂最深点に比べて表面近傍で弱くなっていることが分かった。また、表面亀裂の場合に比べてクラッド下亀裂の場合には塑性拘束が弱められ、その弱い拘束の影響によりクラッド下亀裂の見かけの破壊靭性が表面亀裂のそれよりも高くなることがローカルアプローチによって示唆された。

論文

Effect of coolant water temperature of emergency core cooling system on failure probability of reactor pressure vessel

Lu, K.; 勝山 仁哉; 眞崎 浩一; 渡辺 正*; Li, Y.

Journal of Pressure Vessel Technology, 143(3), p.031704_1 - 031704_8, 2021/06

 被引用回数:0 パーセンタイル:0(Engineering, Mechanical)

Structural integrity assessment of reactor pressure vessel (RPV) is important for the safe operation of nuclear power plant. For an RPV in a pressurized water reactor (PWR), pressurized thermal shock (PTS) resulted from rapid coolant water injection due to a loss-of-coolant accident is an issue of particular concern. The coolant water temperature in the emergency core cooling system (ECCS) can influence the integrity of RPV subjected to PTS events; thus, this paper is focused on investigating the effect of coolant water temperature of ECCS on failure probability of an RPV. First, thermal-hydraulic (TH) analyses were conducted for a Japanese PWR model plant by using RELAP5, and different coolant water temperatures in ECCS were considered to investigate the effect of coolant water temperature on TH behaviors during a PTS event. Using the TH analysis results, probabilistic fracture mechanics (PFM) analyses were performed for the RPV of the Japanese model plant. Based on the PFM analysis results, the effect of coolant water temperature on failure probability of the RPV was quantified.

論文

Application of probabilistic fracture mechanics to reactor pressure vessel using PASCAL4 code

Lu, K.; 勝山 仁哉; Li, Y.; 吉村 忍*

Journal of Pressure Vessel Technology, 143(2), p.021505_1 - 021505_8, 2021/04

 被引用回数:0 パーセンタイル:0(Engineering, Mechanical)

Probabilistic fracture mechanics (PFM) is considered to be a promising methodology in structural integrity assessments of pressure-boundary components in nuclear power plants since it can rationally represent the inherent probabilistic distributions for influence parameters without over-conservativeness. To strengthen the applicability of PFM methodology in Japan, Japan Atomic Energy Agency has developed a PFM analysis code PASCAL4 which enables the failure frequency evaluation of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and thermal transients. PASCAL4 is expected to make a significant contribution to the probabilistic integrity assessment of Japanese RPVs. In this study, PFM analysis for a Japanese model RPV in a pressurized water reactor (PWR) was conducted using PASCAL4, and the effects of nondestructive examination (NDE) and neutron flux reduction on failure frequencies of the RPV were quantitatively evaluated. From the analysis results, it is concluded that PASCAL4 is useful for probabilistic integrity assessments of embrittled RPVs and can enhance the applicability of PFM methodology.

論文

Stress intensity factor solutions for surface cracks with large aspect ratios in cylinders and plates

Zhang, T.; Lu, K.; 勝山 仁哉; Li, Y.

International Journal of Pressure Vessels and Piping, 189, p.104262_1 - 104262_12, 2021/02

 被引用回数:1 パーセンタイル:79.59(Engineering, Multidisciplinary)

In recent years, a large number of surface cracks caused by stress corrosion cracking (SCC) have been reported in dissimilar metal welds of light water reactors. For some of these cracks, the depth (a) is greater than the half-length ($$l/2$$). Upon the detection of cracks, the integrity of cracked components should be assessed in accordance with the fitness-for-service (FFS) codes such as the ASME Boiler and Pressure Vessel Code Section XI or JSME code of Rules on Fitness-for-Service for Nuclear Power Plants. Current FFS codes provide SIF solutions of surface cracks with small aspect ratios (i.e. $$a/l$$ $$leq$$ 0.5) only. For the integrity assessment of components with surface cracks of large aspect ratios (i.e. $$a/l$$ $$>$$ 0.5), it is necessary to develop the SIF solutions for those cracks. This study calculates the SIF solutions of surface cracks with aspect ratios of 0.5 $$leq$$ $$a/l$$ $$leq$$ 4 in both cylinders and plates by characterizing the cracks as rectangular shaped ones. Finite element simulations are performed to develop the database of SIF solutions for rectangular shaped surface cracks subjected to a 4th order polynomial stress distribution. Additionally, the universal weight function method (UWFM) in calculating the SIF solutions of rectangular shaped surface cracks with large aspect ratios is investigated. Example SIF calculations for rectangular shaped surface cracks subject to residual stress were conducted using the UWFM. The SIF solutions calculated by the UWFM are compared with those from the finite element simulations to show the effectiveness of the UWFM.

論文

Stacking fault driven phase transformation in CrCoNi medium entropy alloy

He, H.*; Naeem, M.*; Zhang, F.*; Zhao, Y.*; Harjo, S.; 川崎 卓郎; Wang, B.*; Wu, X.*; Lan, S.*; Wu, Z.*; et al.

Nano Letters, 21(3), p.1419 - 1426, 2021/02

 被引用回数:0 パーセンタイル:0(Chemistry, Multidisciplinary)

In CrCoNi, a so-called medium-entropy alloy, an fcc-to-hcp phase transformation has long been anticipated. Here, we report an in situ loading study with neutron diffraction, which revealed a bulk fcc-to-hcp phase transformation in CrCoNi at 15 K under tensile loading. By correlating deformation characteristics of the fcc phase with the development of the hcp phase, it is shown that the nucleation of the hcp phase was triggered by intrinsic stacking faults. The confirmation of a bulk phase transformation adds to the myriads of deformation mechanisms available in CrCoNi, which together underpin the unusually large ductility at low temperatures.

論文

Quasifree neutron knockout reaction reveals a small $$s$$-Orbital component in the Borromean nucleus $$^{17}$$B

Yang, Z. H.*; 久保田 悠樹*; Corsi, A.*; 吉田 数貴; Sun, X.-X.*; Li, J. G.*; 木村 真明*; Michel, N.*; 緒方 一介*; Yuan, C. X.*; et al.

Physical Review Letters, 126(8), p.082501_1 - 082501_8, 2021/02

 被引用回数:8 パーセンタイル:97.59(Physics, Multidisciplinary)

ボロミアン核であり中性子ハロー構造が期待される$$^{17}$$Bに対する($$p$$,$$pn$$)反応実験を行った。断面積の運動量分布を分析することで、$$1s_{1/2}$$$$0d_{5/2}$$軌道の分光学的因子を決定した。驚くべきことに、$$1s_{1/2}$$の分光学的因子は9(2)%と小さいことが明らかになった。この結果は、連続状態を含むdeformed relativistic Hartree-Bogoliubov理論によってよく説明された。本研究の結果によると、現在知られているハロー構造を持つとされる原子核の中で$$^{17}$$Bは$$s$$および$$p$$軌道の成分が最も小さく、$$s$$または$$p$$軌道成分が支配的であることが必ずしもハロー構造の前提条件ではない可能性を示唆している。

論文

Plasticity correction on stress intensity factor evaluation for underclad cracks in reactor pressure vessels

Lu, K.; 勝山 仁哉; Li, Y.

Journal of Pressure Vessel Technology, 142(5), p.051501_1 - 051501_10, 2020/10

 被引用回数:0 パーセンタイル:0(Engineering, Mechanical)

Structural integrity assessment of reactor pressure vessels (RPVs) is essential for the safe operation of nuclear power plants. For RPVs in pressurized water reactors (PWRs), the assessment should be performed by considering neutron irradiation embrittlement and pressurized thermal shock (PTS) events. To assess the structural integrity of an RPV, a traditional method is usually employed by comparing fracture toughness of the RPV material with the stress intensity factor ($$K_{rm I}$$) of a crack postulated near the RPV inner surface. When an underclad crack (i.e., a crack beneath the cladding of an RPV) is postulated, $$K_{rm I}$$ of this crack can be increased owing to the plasticity effect of cladding. This is because the yield stress of cladding is lower than that of base metal and the cladding may yield earlier than base metal. In this paper, detailed three-dimensional (3D) finite element analyses (FEAs) were performed in consideration of the plasticity effect of cladding for underclad cracks postulated in Japanese RPVs. Based on the 3D FEA results, a plasticity correction method was proposed on $$K_{rm I}$$ calculations of underclad cracks. In addition, the effects of RPV geometries and loading conditions were investigated using the proposed plasticity correction method. Moreover, the applicability of the proposed method to the case which considers the hardening effect of materials after neutron irradiation was also investigated. All of these results indicate that the proposed plasticity correction method can be used for $$K_{rm I}$$ calculations of underclad cracks and is applicable to structural integrity assessment of Japanese RPVs containing underclad cracks.

論文

Extension of PASCAL4 code for probabilistic fracture mechanics analysis of reactor pressure vessel in boiling water reactor

Lu, K.; 勝山 仁哉; Li, Y.

Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 10 Pages, 2020/08

In Japan, Japan Atomic Energy Agency has developed a probabilistic fracture mechanics (PFM) analysis code, PASCAL4, for probabilistic evaluation of reactor pressure vessels (RPVs) in pressurized water reactors (PWRs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) events. Besides severe PTS events, however, transients associated with normal operations, such as the cooldown and heatup transients associated with reactor shutdown and startup, respectively, should also be considered in the integrity assessment of RPVs in both PWRs and boiling water reactors (BWRs). With regard to a heatup transient, because temperature is at its minimum, and tensile stress at its maximum on the RPV outer surface, outer surface crack and embedded crack near the RPV outer surface should be taken into account. To extend the applicability of PASCAL4, we improved the code to include analysis functions for these cracks. The improved PASCAL4 can be used to run PFM analyses of RPVs subjected to both cooldown (including PTS) and heatup transients. In this paper, improvements made to PASCAL4 are firstly described, including the incorporated stress intensity factor solutions and the corresponding calculation methods for vessel outer surface crack and embedded crack near the outer surface. Using the improved PASCAL4, PFM analysis examples for a Japanese BWR-type model RPV subjected to thermal transients including a low temperature overpressure event and a heatup transient are presented.

論文

Improved Bayesian update method on flaw distributions reflecting non-destructive inspection result

勝山 仁哉; 宮本 裕平*; Lu, K.; 真野 晃宏; Li, Y.

Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 8 Pages, 2020/08

原子力機構では、中性子照射脆化及び加圧熱衝撃事象等の過渡事象を考慮し、原子炉圧力容器(RPV)の破損頻度を算出するための確率的破壊力学(PFM)解析コードPASCAL4の開発を進めている。亀裂のサイズや密度等の欠陥分布は、PFM解析の破損頻度を算出する上で重要な影響因子であることがよく知られている。NUREG-2163では、非破壊検査(NDI)の結果を反映するベイズ更新手法が提案されているが、NDIにより欠陥指示がある場合にのみ適用可能である。RPVの検査結果として欠陥指示がない場合があることから、我々は以前、NDIの結果として欠陥指示がある場合とない場合の両方に適用可能な尤度関数を提案した。しかし、これらのベイズ更新手法では、両者に相関のあると考えられる亀裂のサイズと密度を独立に更新する尤度関数が適用されている。本研究では、尤度関数をさらに改善し、亀裂のサイズと密度を同時に更新できるようにした。また、その尤度関数に基づきベイズ更新及びPFM解析を行い、その有用性を示した。

論文

Recent verification activities on probabilistic fracture mechanics analysis code PASCAL4 for reactor pressure vessel

Lu, K.; 勝山 仁哉; Li, Y.; 宮本 裕平*; 廣田 貴俊*; 板橋 遊*; 永井 政貴*; 鈴木 雅秀*; 関東 康祐*

Mechanical Engineering Journal (Internet), 7(3), p.19-00573_1 - 19-00573_14, 2020/06

Probabilistic fracture mechanics (PFM) is considered a promising methodology in assessing the integrity of structural components in nuclear power plants because it can rationally represent the influence parameters in their probabilistic distributions without over-conservativeness. In Japan, Japan Atomic Energy Agency has developed a PFM analysis code PASCAL4 (PFM Analysis of Structural Components in Aging LWRs Version 4) which enables the probabilistic integrity assessment of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock events. Several efforts have been made to verify PASCAL4 to ensure that this code can provide reliable analysis results. In particular, a Japanese working group, which consists of different participants from the industry and from universities and institutes, has been established to conduct the verification studies. This paper summarizes verification activities of the working group in the past two years. Based on those verification activities, the reliability and applicability of PASCAL4 for structural integrity assessments of Japanese RPVs have been confirmed with great confidence.

論文

Improvements on evaluation functions of a probabilistic fracture mechanics analysis code for reactor pressure vessels

Lu, K.; 勝山 仁哉; Li, Y.

Journal of Pressure Vessel Technology, 142(2), p.021208_1 - 021208_11, 2020/04

 被引用回数:3 パーセンタイル:68.53(Engineering, Mechanical)

In Japan, a probabilistic fracture mechanics (PFM) analysis code PASCAL was developed for structural integrity assessment of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) events. By reflecting the latest knowledge and findings, the evaluation functions are continuously improved and have been incorporated into PASCAL4 which is the most recent version of the PASCAL code. In this paper, the improvements made in PASCAL4 are explained in detail, such as the evaluation model of warm prestressing (WPS) effect, evaluation function of confidence levels for PFM analysis results by considering the epistemic and aleatory uncertainties in probabilistic variables, the recent stress intensity factor (KI) solutions, and improved methods for KI calculations when considering complicated stress distributions. Moreover, using PASCAL4, PFM analysis examples considering these improvements are presented.

論文

Shell structure of the neutron-rich isotopes $$^{69,71,73}$$Co

Lokotko, T.*; Leblond, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Poves, A.*; Nowacki, F.*; 緒方 一介*; 吉田 数貴; Authelet, G.*; et al.

Physical Review C, 101(3), p.034314_1 - 034314_7, 2020/03

 被引用回数:4 パーセンタイル:81.41(Physics, Nuclear)

中性子過剰核である$$^{69,71,73}$$Coに対する($$p,2p$$)ノックアウト反応が理化学研究所RIBFで測定された。$$gamma-gamma$$ coincidenceの方法で準位構造が決定され、測定された包括的断面積および排他的断面積から暫定的ではあるがスピン・パリティが決定された。殻模型計算との比較により、$$^{69,71,73}$$Coの低励起状態には球形核と変形核が共存することが示唆された。

論文

Fine structure in the $$alpha$$ decay of $$^{223}$$U

Sun, M. D.*; Liu, Z.*; Huang, T. H.*; Zhang, W. Q.*; Andreyev, A. N.; Ding, B.*; Wang, J. G.*; Liu, X. Y.*; Lu, H. Y.*; Hou, D. S.*; et al.

Physics Letters B, 800, p.135096_1 - 135096_5, 2020/01

 被引用回数:6 パーセンタイル:90.31(Astronomy & Astrophysics)

Fine structure in the $$alpha$$ decay of $$^{223}$$U was observed in the fusion-evaporation reaction $$^{187}$$Re($$^{40}$$Ar,p3n) by using fast digital pulse processing technique. Two $$alpha$$-decay branches of $$^{223}$$U feeding the ground state and 244 keV excited state of $$^{219}$$Th were identified by establishing the decay chain $$^{223}$$U$$rightarrow$$$$^{219}$$Th$$rightarrow$$$$^{215}$$Ra$$rightarrow$$$$^{211}$$Rn. The $$alpha$$-particle energy for the ground-state to ground-state transition of $$^{223}$$U was determined to be 8993(17) keV, 213 keV higher than the previous value, the half-life was updated to be 62$$^{+14}_{-10} mu$$s. Evolution of nuclear structure for $$N$$=131 even-$$Z$$ isotones from Po to U was discussed in the frameworks of nuclear mass and reduced $$alpha$$-decay width, a weakening octupole deformation in the ground state of $$^{223}$$U relative to its lighter isotones $$^{219}$$Ra and $$^{211}$$Th was suggested.

論文

Application of probabilistic fracture mechanics methodology for Japanese reactor pressure vessels using PASCAL4

Lu, K.; 勝山 仁哉; Li, Y.; 吉村 忍*

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 9 Pages, 2019/07

Probabilistic fracture mechanics (PFM) methodology, which represents the influence parameters in their inherent probabilistic distributions, is deemed to be promising in the structural integrity assessment of pressure-boundary components in nuclear power plants. To strengthen the applicability of PFM methodology in Japan, Japan Atomic Energy Agency has developed a PFM analysis code called PASCAL4 (PFM Analysis of Structural Components in Aging LWRs Version 4) which can be used to evaluate the failure frequency of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock events. PASCAL4 is expected to make a significant contribution to the probabilistic integrity assessment of Japanese RPVs. In this study, PFM analyses are performed for a Japanese model RPV using PASCAL4, and the effects of non-destructive examination and neutron fluence mitigation on failure frequency of RPV are quantitatively evaluated. From the analysis results, it is concluded that PASCAL4 is useful for the structural integrity assessment of RPVs and can enhance the applicability of PFM methodology.

論文

Effect of coolant water temperature of ECCS on failure probability of RPV

勝山 仁哉; 眞崎 浩一; Lu, K.; 渡辺 正*; Li, Y.

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 7 Pages, 2019/07

加圧水型原子炉の原子炉圧力容器(RPV)において、非常用炉心冷却系(ECCS)の冷却材の温度が加圧熱衝撃(PTS)事象時のRPVの構造健全性に影響する可能性がある。PTS事象時の熱衝撃の影響を低減することを目的とした緩和措置として、ECCSの冷却水温度を上げることに着目し、国内の代表的な高経年化したPWRプラントを対象に、システム解析コードRELAP5及び確率論的破壊力学(PFM)解析コードPASCAL4を用いた熱水力解析及びPFM解析を実施した。その結果、高圧注入系と低圧注入系(HPI/LPI)の冷却水温度のみを上昇させた場合には破損確率の低減に効果はない。一方、HPI/LPI及び蓄圧系の冷却水温度を上昇させた場合にはRPVの破損確率が大きく低減することを示した。

論文

Verification of a probabilistic fracture mechanics code PASCAL4 for reactor pressure vessels

Lu, K.; 勝山 仁哉; Li, Y.; 宮本 裕平*; 廣田 貴俊*; 板橋 遊*; 永井 政貴*; 鈴木 雅秀*; 関東 康祐*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05

Probabilistic fracture mechanics (PFM) is considered as a promising methodology in the integrity assessment of structural components in a nuclear power plant since it can rationally represent the influence parameters in their inherent probabilistic distributions without over-conservativeness. In Japan, a PFM analysis code called PASCAL4 (PFM Analysis of Structural Components in Aging LWRs Version 4) has been developed by Japan Atomic Energy Agency, which can be used for structural integrity assessments of reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock events. Up till now, many efforts have been made on verifying the PASCAL4 code. Among them, a Japanese working group which is consisted of seven participants from industries, universities and institutes was established to conduct the verification studies. Based on verification activities during the past two years, the reliability and applicability of PASCAL4 for structural integrity assessments of Japanese RPVs were confirmed with great confidence. This paper summarizes the verification activities in this working group including the verification plan, analysis conditions and results.

論文

Nuclear structure of $$^{76}$$Ni from the ($$p$$,$$2p$$) reaction

Elekes, Z.*; Kripk$'o$, $'A$*; Sohler, D.*; Sieja, K.*; 緒方 一介*; 吉田 数貴; Doornenbal, P.*; Obertelli, A.*; Authelet, G.*; 馬場 秀忠*; et al.

Physical Review C, 99(1), p.014312_1 - 014312_7, 2019/01

 被引用回数:7 パーセンタイル:81.56(Physics, Nuclear)

($$p$$,$$2p$$)反応による$$^{76}$$Niの核構造の探索実験を行った。Lenzi, Nowacki, Poves, Sieja相互作用を用いた殻模型計算では実験結果を説明しうる陽子空孔状態が得られており、理論的な断面積計算は実験値とよい一致を与えた。実験で得られたすべての状態を理論的に一意に決定することはできなかったが、過去の実験結果と同様にNi同位体でのZ = 28の大きなshell gapを示す結果が得られた。

論文

Stratification break-up by a diffuse buoyant jet; A CFD benchmark exercise

Studer, E.*; 安部 諭; Andreani, M.*; Bharj, J. S.*; Gera, B.*; Ishay, L.*; Kelm, S.*; Kim, J.*; Lu, Y.*; Paliwal, P.*; et al.

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 16 Pages, 2018/10

Nuclear engineering research groups were interested in the phenomena of the interaction between a rising jet and a stratified layer located above in order to better understand the underlying mechanisms of hydrogen accumulation and dispersion in a nuclear reactor containment. Previous studies were performed with an upward jet of fluid heavier or lighter than the upper stratified layer. However, in real configurations i.e. the inner part of a nuclear containment, obstacles such as pipes, components as pumps or reservoirs and walls are present, and they can dissipate the initial momentum of the gas release. Consequently, the upward flow pattern can be considered "diffuse" and buoyant, neither pure jet nor pure plume. Therefore, this challenging issue was part of a project called HYMERES, which was launched and conducted in the OECD/NEA framework. Dedicated experiments were performed to study the interaction between a diffuse buoyant jet and two-layer stratification. In the large-scale MISTRA facility, the HM1-1 test series were conducted in which the erosive flow pattern came from a horizontal hot air jet impinging on a vertical cylinder. These experimental results were offered for a blind and open benchmark exercise.

論文

Development of crack evaluation models for probabilistic fracture mechanics analyses of Japanese reactor pressure vessels

Lu, K.; 眞崎 浩一; 勝山 仁哉; Li, Y.

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 8 Pages, 2018/07

In Japan, a probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed by Japan Atomic Energy Agency for structural integrity assessment of reactor pressure vessels (RPVs). The most recent release is PASCAL Version 4 (hereafter, PSACAL4) which can be used to evaluate the failure frequency of RPVs considering neutron irradiation embrittlement and pressurized thermal shock events. For the integrity assessment of RPVs, development of crack evaluation models is important. In this study, finite element analyses are performed firstly to verify the stress intensity factor calculations of cracks in PASCAL4. In addition, the applicability of the crack evaluation models in PASCAL4 such as the location of embedded cracks, crack shape and depth of surface cracks, and the increment of crack propagation is investigated. Based on sensitivity analyses of crack evaluation models for Japanese RPVs using PASCAL4, the effects of these evaluation models on failure frequency are clarified. From the analysis results, crack evaluation models recommended to the failure frequency evaluation for a Japanese model RPV are discussed.

論文

Development of probabilistic fracture mechanics analysis code PASCAL Version 4 for reactor pressure vessels

Lu, K.; 眞崎 浩一; 勝山 仁哉; Li, Y.; 宇野 隼平*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 10 Pages, 2018/07

In Japan, Japan Atomic Energy Agency has developed a PFM analysis code PASCAL (PFM Analysis of Structural Components in Aging LWRs) for structural integrity assessment of Japanese reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock transients. By reflecting the latest knowledge and findings, the PASCAL code has been continuously improved. In this paper, the development of PASCAL Version 4 (hereafter, PASCAL4) is described. Several analysis functions incorporated into PASCAL4 for evaluating the failure frequency of RPVs are introduced, for example, the evaluation function of confidence level of failure frequency considering epistemic and aleatory uncertainties in probabilistic variables, the recent stress intensity factor (KI) solutions and KI calculation methods considering complicated stress distributions, and the recent Japanese irradiation embrittlement prediction method. Finally, using PASCAL4, a PFM analysis example for a Japanese model RPV is presented.

52 件中 1件目~20件目を表示