Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 35

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Stoichiometry between humate unit molecules and metal ions in supramolecular assembly induced by Cu$$^{2+}$$ and Tb$$^{3+}$$ measured by gel electrophoresis techniques

Nakano, Sumika*; Marumo, Kazuki*; Kazami, Rintaro*; Saito, Takumi*; Haraga, Tomoko; Tasaki-Handa, Yuiko*; Saito, Shingo*

Environmental Science & Technology, 55(22), p.15172 - 15180, 2021/11

 Times Cited Count:4 Percentile:36.59(Engineering, Environmental)

Humic acid (HA) can strongly complex with metal ions to form a supramolecular assembly via coordination binding. However, determining the supramolecular size distribution and stoichiometry between small HA unit molecules constituting HA supramolecule and metal ions has proven to be challenging. Here, we investigated the changes in the size distributions of HAs induced by Cu$$^{2+}$$ and Tb$$^{3+}$$ ions using a unique polyacrylamide gel electrophoresis (PAGE) for the separation and quantification of HA complexes and metal ions bound, followed by UV-Vis spectroscopy and EEM-PARAFAC. It was found that the supramolecular behaviors of Cu$$^{2+}$$ and Tb$$^{3+}$$ complexes with HA collected from peat and deep groundwater (HHA) differed. Our results suggest that this supramolecular stoichiometry is related to the abundance of sulfur atoms in the elemental composition of HHA. Our results provide new insights into HA supramolecules formed via metal complexation.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2019

Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Koike, Yuko; Yamada, Ryohei; Kubota, Tomohiro; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.

JAEA-Review 2020-070, 120 Pages, 2021/02

JAEA-Review-2020-070.pdf:2.47MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2019. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2019

Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Seya, Natsumi; Nishimura, Shusaku; Hosomi, Kenji; Nagaoka, Mika; Yokoyama, Hiroya; Matsubara, Natsumi; et al.

JAEA-Review 2020-069, 163 Pages, 2021/02

JAEA-Review-2020-069.pdf:4.78MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2019 to March 2020. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2018

Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Nishimura, Shusaku; Matsubara, Natsumi; Maehara, Yushi; Narita, Ryosuke; et al.

JAEA-Review 2019-048, 165 Pages, 2020/03

JAEA-Review-2019-048.pdf:2.69MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2018 to March 2019. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2018

Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.

JAEA-Review 2019-045, 120 Pages, 2020/03

JAEA-Review-2019-045.pdf:2.54MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2018. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

Journal Articles

Advanced gel electrophoresis techniques reveal heterogeneity of humic acids based on molecular weight distributions of kinetically inert Cu$$^{2+}$$-humate complexes

Marumo, Kazuki*; Matsumoto, Atsumasa*; Nakano, Sumika*; Shibukawa, Masami*; Saito, Takumi*; Haraga, Tomoko; Saito, Shingo*

Environmental Science & Technology, 53(24), p.14507 - 14515, 2019/12

 Times Cited Count:7 Percentile:29.54(Engineering, Environmental)

Humic acids (HA) are responsible for the fate of metal ions in the environment. We developed a polyacrylamide gel electrophoresis (PAGE) technique to investigate the MW distributions of metal ion (copper ion). Combining contaminant-metal-free and high-resolution PAGE systems for HA provided accurate MW distributions for the metal ions. Coupling this system with UV-Vis spectrometry and the excitation-emission matrix (EEM) spectrometry-parallel factor analysis (PARAFAC) method revealed new insights into metal-HA complex. Interestingly, the MW distributions of the three metal ions were entirely different, indicating that the presence of specific binding environments in HA for the metal ions depending its MW. The MW distributions of five fluorescent components were associated with the metal ion distributions. Our PAGE-based methodology suggests that metal binding sites and fluorescent components in HA exhibit heterogeneity in terms of metal binding affinity and MW.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2017

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Hiyama, Yoshinori*; Otani, Kazunori*; et al.

JAEA-Review 2018-028, 120 Pages, 2019/02

JAEA-Review-2018-028.pdf:2.69MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2017. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2017

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Hokama, Tomonori; Nishimura, Tomohiro; Matsubara, Natsumi; et al.

JAEA-Review 2018-025, 171 Pages, 2019/02

JAEA-Review-2018-025.pdf:3.81MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2016

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Nishimura, Tomohiro; Koike, Yuko; et al.

JAEA-Review 2017-028, 177 Pages, 2018/01

JAEA-Review-2017-028.pdf:3.61MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Analysis of meteorological observation data for the atmospheric diffusion calculation; FY2005-2015

Nishimura, Tomohiro; Onuma, Toshimitsu*; Mizutani, Tomoko; Nakano, Masanao

JAEA-Technology 2017-019, 60 Pages, 2017/09

JAEA-Technology-2017-019.pdf:3.2MB

The meteorological observation has been performed since 1969's in the Nuclear Fuel Cycle Engineering Laboratories, JAEA after 1974. The meteorological observation data has been applied for the calculation of the atmospheric diffusion of radioactive wastes since the hot run was started 1977. This report presents statistical results of meteorological observation based on the decadal data from fiscal year 2005 to 2015. The characteristics of atmospheric diffusion related to the meteorological parameter are also discussed in this report.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2015

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; Matsubara, Natsumi; Maehara, Yushi; et al.

JAEA-Review 2016-035, 179 Pages, 2017/03

JAEA-Review-2016-035.pdf:4.2MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2015 to March 2016. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2014

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju*; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; et al.

JAEA-Review 2015-034, 175 Pages, 2016/03

JAEA-Review-2015-034.pdf:8.13MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2014 to March 2015. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co. in March 2011.

Journal Articles

LET dependency of human normal dermal cells survival in carbon ion irradiation

Yoshida, Yukari*; Mizohata, Kensuke*; Matsumura, Akihiko*; Isono, Mayu*; Yako, Tomoko*; Nakano, Takashi*; Funayama, Tomoo; Kobayashi, Yasuhiko; Kanai, Tatsuaki*

JAEA-Review 2014-050, JAEA Takasaki Annual Report 2013, P. 81, 2015/03

In the clinical application of carbon-ion (C-ion) radiation therapy in Japan, different RBE values of carbons have been used for clinical and biological endpoints. The biological RBE (bRBE) was estimated by a method that is based on the linear-quadratic (LQ) model, and was defined ${it in vitro}$ at the 10% surviving fraction of human salivary gland (HSG) tumor cells. However, many of biological parameters, that is, type of tissues, different sort of cells, oxygenation levels, and all, could affect radiosensitivity. Thus, normal human dermal fibroblasts (NHDF) cells were exposed to C-ion beams at Gunma University (10-80 keV/micrometer) and TIARA (108 and 158 keV/micrometer). The surviving fractions were analyzed with colony formation assays. The experimental RBE (eRBE) values were estimated from the radiation dose survival curve fitted by LQ model, and defined ${it in vitro}$.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2013

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju; Morisawa, Masato; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; et al.

JAEA-Review 2014-042, 175 Pages, 2015/01

JAEA-Review-2014-042.pdf:10.89MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2013 to March 2014. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2012

Sumiya, Shuichi; Watanabe, Hitoshi; Miyagawa, Naoto; Nakano, Masanao; Nakada, Akira; Fujita, Hiroki; Takeyasu, Masanori; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; et al.

JAEA-Review 2013-056, 181 Pages, 2014/03

JAEA-Review-2013-056.pdf:6.22MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2012 to March 2013. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2011

Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Nagaoka, Mika; et al.

JAEA-Review 2013-009, 195 Pages, 2013/06

JAEA-Review-2013-009.pdf:3.35MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2011 to March 2012. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in March 2011.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2010

Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Kokubun, Yuji; et al.

JAEA-Review 2012-015, 166 Pages, 2012/05

JAEA-Review-2012-015.pdf:3.53MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2010 to March 2011. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in 2011 March. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data exceeded the normal range of fluctuation by the accidental release was evaluated in the appendices.

Journal Articles

Highly sensitive detection of neodymium ion in small amount of spent nuclear fuel samples using novel fluorescent macrocyclic hexadentate polyaminocarboxylate probe in capillary electrophoresis-laser-induced fluorescence detection

Saito, Shingo*; Sato, Yoshiyuki*; Haraga, Tomoko; Nakano, Yuta*; Asai, Shiho; Kameo, Yutaka; Takahashi, Kuniaki; Shibukawa, Masami*

Journal of Chromatography A, 1232, p.152 - 157, 2012/04

 Times Cited Count:14 Percentile:45.28(Biochemical Research Methods)

A rapid and high-sensitive detection method of total concentration of Nd ion in a spent nuclear fuel sample is desirable since precise quantification of total Nd is useful as indicator of burnup. In this work, a capillary electrophoresis-laser-induced fluorescent detection method (CE-LIF) was proposed for analysis of total Nd in the spent fuel sample solution, employing a newly synthesized metal fluorescent probe with a fluorescein and a macrocylic hexadentate chelating group, FTC-ABNOTA, for lanthanide (Ln) ions. The mutual separation among the Ln-FTC-ABNOTA complexes was achieved by pH control providing dynamic ternary complexation with hydroxide ions. In this method, high resolution of Nd from other Ln ions with high resolution of 1.3-1.9 and a very low detection limit of 3.2 ppt were successfully obtained. A simulated spent fuel sample containing various metal ions was examined, so that a good quantification result with 99.3% recovery was obtained even with large excess of U.

Journal Articles

Capillary electrophoresis with laser-induced fluorescent detection method using highly emissive probes for analysis of actinides in radioactive wastes

Haraga, Tomoko; Nakano, Yuta*; Shibukawa, Masami*; Kameo, Yutaka; Takahashi, Kuniaki; Saito, Shingo*

Proceedings of 14th International Conference on Environmental Remediation and Radioactive Waste Management (ICEM 2011) (CD-ROM), p.1461 - 1465, 2011/09

Actinides are important nuclides for the analysis of radioactive wastes from nuclear fuel cycle facilities. In order to achieve simple and rapid analysis of actinides, capillary electrophoresis-laser-induced fluorescent detection method (CE-LIF) is one of the potential candidates. In this study, new emissive probes of actinide ions suitable for CE-LIF were developed for the first time. The detection and separation of americium and neptunium ions as model nuclides were examined using several new emissive complexing probes, each of which possessed a fluorophore and a different chelating moiety. Using acyclic and macrocyclic multidentate probes, the highly sensitive fluorescent detection of Am and Np was successfully achieved. The results suggests that the probe with an acyclic hexadentate chelating moiety is suitable for detection and separation of Am and Np. The detection limit of mid-ppt levels was determined.

JAEA Reports

Results of the environmental radiation monitoring following the accident at the Fukushima Daiichi Nuclear Power Plant; Interim report (Ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in the fallout)

Furuta, Sadaaki; Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Imaizumi, Kenji; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Mizutani, Tomoko; Morisawa, Masato; et al.

JAEA-Review 2011-035, 89 Pages, 2011/08

JAEA-Review-2011-035.pdf:2.97MB

As a correspondence to the accident at the Fukushima Daiichi Nuclear Power Plant, the environmental radiation monitoring was performed at the Nuclear Fuel Cycle Engineering Laboratories, JAEA. This report presented the measurement results of ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in fallout and meteorological observation result until May 31, 2011. The ambient radiation dose rate increased, with the peak dose rate of several thousand nGy/h at 7 o'clock in March 15, at 5 o'clock in March 16, and at 4 o'clock in March 21. The variation on the radioactivity concentration in the air and in fallout showed the almost same tendency as that of the dose rate. The concentration ratio of I-131/Cs-137 in the air increased to about 100. The dose was estimated resulting from internal exposure due to inhalation.

35 (Records 1-20 displayed on this page)