Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
山本 風海; 岡部 晃大; 神谷 潤一郎; 吉本 政弘; 竹田 修; 高柳 智弘; 山本 昌亘
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.314 - 318, 2016/11
2007年のRCSの運転開始以後、ビームコリメータではこれまで不具合は起きていなかったが、2016年4月の保守作業時に真空漏れが発生した。ビームコリメータはその機能の上から、非常に放射化することが予想されていたため、真空フランジを遠隔から着脱するためのリモートクランプシステムをはじめとして、作業中の被ばく量を低減するための準備がなされていた。そのため、今回故障が発生してから代わりのダクトへの入れ替えを行うに際して、ビームが直接当たるコリメータ本体では40mSv/hという非常に高い表面線量が測定されたにも関わらず、作業者の被ばく線量は最大でも60マイクロSvに抑えることに成功した。本発表では、コリメータの故障から復旧までの状況について報告する。
長谷川 和男; 金正 倫計; 小栗 英知; 山本 風海; 内藤 富士雄*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1409 - 1412, 2016/11
J-PARCでは2015年の夏季メンテナンス終了後、加速器の立ち上げや調整を経て、10月中旬からハドロン実験施設(HD)と物質・生命科学実験施設(MLF)の利用運転を再開した。HDでは、夏前までのメインリング(MR)の繰り返し周期6.0秒から5.52秒に短縮し、12月には42kWのビームパワー(4月の運転開始時は24kW)まで向上した。1月にはリニアックの利用運転用の電流を40mAに変更し、2月のニュートリノ実験施設(NU)の利用運転を330-360kW(それまでの30mA時は300-330kW)で開始し、その後の調整により390kW、そして5月には425kWまで向上した。その後、HDの利用運転に切り替え6月末まで供給した。MLFは500kWで利用運転を行っていたが、11月に標的の不具合により運転を停止し、予備の標的に交換して2月に約200kWで再開した。この間、主な加速器の不具合として、漏電によるリニアックの換気システムの停止、RCSのコリメータ部での真空リーク、MRの偏向電磁石の故障などがあり、ここでは、こうした加速器の運転状況を報告する。
松田 誠; 長 明彦; 石崎 暢洋; 田山 豪一; 仲野谷 孝充; 株本 裕史; 中村 暢彦; 沓掛 健一; 乙川 義憲; 遊津 拓洋
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1413 - 1417, 2016/11
原子力機構-東海タンデム加速器施設における2015年度の加速器の運転日数は141日であった。最高運転電圧は18MVで、10日間の利用があった。11月に加速器の放電により一部の加速管に不調が生じ、運転電圧を低く抑えて運転を継続せざるを得なくなり、年度末には最高運転電圧は13MVまで下がった。利用されたイオン種は15元素(18核種、22のイオン種)である。利用分野は核物理36%、核化学26%、原子物理・材料照射33%となっている。主な整備事項として、加速管の高エネルギー側にあるビームアパーチャーおよびファラデーカップ位置の再アライメントを行った。また、年度途中から不調となった加速管8本の交換作業を実施した。2015年度の加速器の運転・開発状況およびビーム利用開発について報告する。
澤邊 祐希*; 石山 達也; 高橋 大輔; 加藤 裕子; 鈴木 隆洋*; 平野 耕一郎; 武井 早憲; 明午 伸一郎; 菊澤 信宏; 林 直樹
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.647 - 651, 2016/11
J-PARCでは実機の安定運転に必要なビームスクレーパ照射試験およびレーザ荷電変換試験を実施するために3MeVリニアックを再構築した。3MeVリニアックは、セシウム添加高周波駆動負水素イオン源(RFイオン源)から負水素イオンビームを取り出し、高周波四重極型リニアック(RFQ)で3MeVまでビームを加速する。3MeVリニアックを制御するには、加速器およびレーザから人への安全を確保する人的保護システム(PPS)、加速器構成機器を保護するための機器保護システム(MPS)、各機器の同期をとるタイミングステム、およびEPICSを用いた遠隔制御システムが重要となる。本発表では、これらの3MeVリニアック用制御システムについて報告する。
Saha, P. K.; 菖蒲田 義博; 發知 英明; 原田 寛之
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.125 - 129, 2016/11
The transverse impedance of the extraction kicker magnets is a significant beam instability source in the 3-GeV RCS of J-PARC. The ORBIT code was successfully updated for space charge and beam instability simulations by introducing all realistic time dependent machine parameters. The simulation results showed very critical beam instability situation, especially for the designed 1 MW beam power. Systematic simulation and measurement studies were performed in order to determine a realistic strategy to accomplish 1 MW beam power. The simulation results were well reproduced in the measurements, while an acceleration of 1 MW beam power has also been successfully accomplished. Recently, further suppression of the beam instability for a flexible choice on the parameter space in order to improve the extraction beam quality is also studied.
二ツ川 健太*; 小林 鉄也*; 佐藤 福克; 篠崎 信一; Fang, Z.*; 福井 佑治*; 溝端 仁志; 道園 真一郎*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.327 - 331, 2016/11
J-PARCリニアックは、RFQ下流のビーム輸送路(MEBT1)に設置されているRFチョッパ空洞で不必要なビームを蹴ることにより、中間パルスと呼ばれる櫛形構造のビームを生成している。RFQ下流の空洞では中間パルス形状を持つビームが通過すると、必然的にこのビーム形状の負荷がある。現在までは、ビーム電流を設計値で運転していないこともあり、中間パルス形状に対応した負荷補償ではなく、平均的なビーム電流を仮定した矩形の負荷補償を行ってきた。しかし、ビーム電流の増加でビーム負荷が大きくなるに伴い、RFの要求精度を満たすことが難しくなってきた。そこで、中間パルス形状に対応したビーム負荷補償の試験を実施した。Q値が高いSDTL及びDTLに対する中間パルス形状に対応したビーム負荷補償システムは、良好な結果を得られた。一方で、972MHzのACSに対するビーム負荷補償システムは隣接するモードを励振してしまうということが明らかになり、システムの改良が求められる。
堀 利彦*; 篠崎 信一; 佐藤 福克; 溝端 仁志; 福井 佑治*; 二ツ川 健太*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.429 - 432, 2016/11
本研究会において、324MHzクライストロン電子銃部の変調アノード電位の放電に起因する高圧電源停止頻度を改善した報告を過去3年間行った。放電は25Hz、0.7ms変調パルス以外の充電時間帯に生じており、変調アノードの耐圧劣化が主原因のクライストロン交換数は4本となった。2015年11月以降は、クライストロン印加電圧を従来の23kV低い値での運転を始め、放電回数の増減を継続して調査している。印加電圧を下がったデメリットとして、利用運転時におけるクライストロンパワーのマージンの低下並びに高電流ビーム加速(~50mA)時には印加電圧を再設定し直すことなどが考えられ、各クライストロンの現在の動作点(入出力曲線の肩特性に対するマージンなど)を正確に把握する必要があった。そこで2016年より、クライストロンのカソード電圧、電流から算出されるパービアンス値並びに3種類の加速ビーム幅、ビームローディングの有無に対応したクライストロンゲイン値を測定するためのクライストロン特性用モニタを開発中である。本発表では、パービアンス&ゲインモニタの概要、初号機の試験結果など詳細を報告する。
平野 耕一郎; 浅野 博之; 石山 達也; 伊藤 崇; 大越 清紀; 小栗 英知; 近藤 恭弘; 川根 祐輔; 菊澤 信宏; 佐藤 福克; et al.
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.310 - 313, 2016/11
単位面積当たりの熱負荷を減らすため、67のビーム入射角を有するビームスクレーパをJ-PARCリニアックのRFQとDTLの間のMEBTで使用している。67
ビームスクレーパは粒子数1.47E22個のH
ビームによって照射された。レーザ顕微鏡を用いてスクレーパのビーム照射による損傷部を観察すると、高さ数百
mの突起物が無数にあった。ビームスクレーパの耐電力を調べるため、3MeVリニアックを新たに構築した。2016年末にスクレーパ照射試験を実施する予定である。今回は、J-PARCリニアックのビームスクレーパの現状、及び、ビームスクレーパの照射試験に用いる3MeVリニアックについて報告する。
杉村 高志*; 丸田 朋史*; 平野 耕一郎
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.307 - 309, 2016/11
J-PARCリニアックでは、ビーム強度の増強が計画されており、現在運転しているパラメーター40mA, 25Hz, 500sを50mA, 50Hz, 500
sに変更することを目指している。加速器で大強度ビームを得るためには、ビームロスを出来得る限り軽減しておくことが必須である。J-PARCリニアックでは、イオン源、RFQ(高周波四重極型リニアック)で加速されたビームをMEBT1(Medium Energy Beam Transport 1)でマッチング及びパルス成形を行いDTL(ドリフトチューブ型リニアック)に入射している。現在の運転において、DTLにおける局所的放射化が観測されたため、増強においては更なる対策が必須である。ビームシミュレーションの結果から、DTLにおけるビームロスは、MEBT1に新たに垂直方向のコリメーターを設置することで、軽減できることが分かった。本発表では、上記目的のため、MEBT1に設置する垂直方向コリメーターの製作設計の状況について報告する。
近藤 恭弘; 長谷川 和男; 伊藤 崇; Artikova, S.; 大谷 将士*; 三部 勉*; 内藤 富士雄*; 吉田 光宏*; 北村 遼*; 岩下 芳久*; et al.
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.66 - 69, 2016/11
ミューオン加速のための加速器を開発中である。この加速器により、ミューオンの異常磁気モーメントを0.1ppmの精度で、また電気双極子モーメントを10E-21e cmの精度で測定することが可能となり、素粒子の標準理論をこえる物理の探索ができるようになる。このミューオンリニアックは、超低速ミューオン源,高周波四重極リニアック,交差櫛形Hモードドリフトチューブリニアック,ディスクアンドワッシャ型結合空洞リニアック,円盤装荷型進行波リニアックからなる。本論文では、このミューオンリニアックの開発状況、特にビーム力学設計について述べる。
大谷 将士*; 三部 勉*; 吉田 光宏*; 長谷川 和男; 近藤 恭弘; 林崎 規託*; 岩下 芳久*; 岩田 佳之*; 北村 遼*; 齊藤 直人
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.858 - 862, 2016/11
J-PARCにおけるミューオン異常磁気モーメント及び電気双極子モーメント測定実験のための、交代位相収束(APF)を用いた交差櫛形Hモードドリフトチューブリニアック(IH-DTL)の設計を行った。IH-DTLはミューオンを光速の0.08倍から0.28倍まで加速し、共振周波数は324MHzである。LINACSapfコードを用いてAPFのビーム力学設計を行い、空洞設計はCST micro wave studioを用いた。設計によって得られたIH-DTL出口でのエミッタンスは、0.315及び0.195 mm mradであり、物理実験に必要な性能をみたす設計が得られた。
北村 遼*; 大谷 将士*; 深尾 祥紀*; 河村 成肇*; 三部 勉*; 三宅 康博*; 下村 浩一郎*; 近藤 恭弘; 長谷川 和男; 石田 勝彦*; et al.
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.476 - 479, 2016/11
J-PARCにおいて、新しいミューオンg-2実験が計画されている。この実験では、超低温ミューオンを生成し、線形加速器によって再加速する。このミューオンリニアックの初段の加速構造として、RFQが用いられる。初期の加速試験において、J-PARCリニアックの予備機として製作されたRFQ(RFQ II)を用いる予定である。この論文では、初期の加速試験に用いる、アルミニウムのデグレーダを用いた低速ミューオン源の開発状況、また、このミューオン源を用いたミューオン加速のシミュレーション研究について述べる。
内藤 富士雄*; 穴見 昌三*; 池上 清*; 魚田 雅彦*; 大内 利勝*; 大西 貴博*; 大場 俊幸*; 帯名 崇*; 川村 真人*; 熊田 博明*; et al.
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1244 - 1246, 2016/11
いばらき中性子医療研究センターのホウ素中性子捕獲療法(iBNCT)システムは線形加速器で加速された8MeVの陽子をBe標的に照射し、中性子を発生させる。この線形加速器システムはイオン源, RFQ, DTL, ビーム輸送系と標的で構成されている。このシステムによる中性子の発生は2015年末に確認されているが、その後システムの安定性とビーム強度を共に高めるため多くの改修を施した。そして本格的なビームコミッショニングを2016年5月中旬から開始する。その作業の進展状況と結果を報告する。
宮尾 智章*; 丸田 朋史*; Liu, Y.*; 三浦 昭彦
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1094 - 1096, 2016/11
J-PARCリニアックでは、ACS(Annular-ring Coupled Structure)加速空洞を2013年度から使用し、負水素イオンビームを400MeVまで加速している。このACS加速空洞にビームを入射する際、RF加速周波数が324MHzから972MHzにジャンプするため、バンチシェイプモニターを用いて位相方向のビーム位相の拡がりを測定し、加速空洞の調整を行っている。測定位置でのビーム位相の拡がりは、およそ4と推定されているため、設計上の位相分解能を1
とした。ビームラインに設置後、実際のビームを用いてモニタの性能評価のための位相分解能の測定を行た結果、約1.8
であることが分かった。これを用いて、ACS加速空洞にビームを入射する際、ビーム位相幅を調整するためにバンチャー空洞のRFの振幅を調整した。測定した振幅と位相幅の関係を示し、ACS加速空洞の調整について説明する。
三浦 昭彦; 吉本 政弘; 岡部 晃大; 山根 功*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.1102 - 1106, 2016/11
J-PARC LINACでは、負水素イオンビームを400MeVまで加速し、下流のシンクロトロン(RCS)に供給している。大強度陽子加速器においてビーム損失を抑制するためのビーム調整は非常に重要で、必要な機器の一つがビームプロファイルモニタである。現在、プロファイルモニタには、金属製のワイヤを使用しているが、熱的耐久性の観点から、大強度ビームではビーム非破壊のレーザー法が適している。負水素イオンの1つの電子のイオン化ポテンシャルは0.75eVと低いため、可視光域のレーザー光から適した波長を選択することができ、レーザーワイヤ法の現実的なシステムを形成できる。さらに、径の異なる一対の凹面鏡を対面させ、鏡間に複数のレーザーの光路(レーザーワイヤ)を形成する新たな手法を提案した。レーザー光のビームウエストを同一直線状に並ぶように光学設計することで、負水素イオンビームの進行方向にレーザー光路の面を平行に配置し、複数のレーザーワイヤを用いたビーム計測が可能となる。本発表では、マルチレーザーワイヤをプロファイルモニタに適用する原理と、ビーム計測のためのシステムについて報告する。
武井 早憲; 平野 耕一郎; 堤 和昌; 千代 悦司; 三浦 昭彦; 近藤 恭弘; 森下 卓俊; 小栗 英知; 明午 伸一郎
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.987 - 991, 2016/11
加速器駆動システム(ADS)は、原子炉で発生するマイナーアクチノイド(MA)などの長寿命放射性核種を核変換する一つの候補である。このMAを効率よく核変換するためには、ADS炉心における中性子分布を精度よく予想することが必要不可欠である。ADS用の中性子データを収集するために、J-PARCでは核変換物理実験施設(TEF-P)の建設を計画している。TEF-Pは、未臨界炉の熱出力が500W以上にならないように、安定な陽子ビーム(最大10W)を必要とする。このため、大強度負水素イオン(H)ビーム(エネルギー400MeV、出力250kW)から微弱なビームを安定かつ精度よく切り出す方法を開発しなければならない。この要求を満たすために、レーザー荷電変換技術(LCE)を開発している。開発しているLCE装置は、1パルス当たり1.6J、繰り返し数25HzのYAGレーザー、及びレーザー光の位置を精度良く制御する制御系から構成されている。そして、陽子ビーム輸送系の偏向電磁石中で、レーザー光によってH
ビームの電子を剥ぎ取り、H
を分離している。現在、レーザー光を用いてH
ビームの荷電を変換することを確認するため、J-PARCのRFQテストスタンドでエネルギー3MeVのH
ビームを用いてLCE試験を実施している。本論文では、LCE試験の現状について報告する。
千代 悦司; 佐川 隆*; 鳥山 稔*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.400 - 402, 2016/11
J-PARCリニアックのクライストロン電源は、12相の600Vの交流電圧を位相制御されたサイリスタにてチョップし、変圧器にて110kVまで昇圧し、整流器にて直流化し、直流高電圧を発生している。本電源では、昇圧変圧器、整流器および平滑用リアクトルが一体化し、変圧整流器を構成しているが、この変圧整流器の整流器が、稼働時間が30,000時間以上経過すると故障が発生し、しばしば加速器を長期間停止させてきた。整流器は、ダイオードと分圧用のコンデンサーを並列に接続し、多段にスタックすることで耐電圧を得ている。故障した整流器を調査したところ、セラミックコンデンサーのモールド内のセラミック沿面で絶縁破壊しており、耐圧以上の電圧がコンデンサーに印加されていた。高電圧がコンデンサーに印加される原因を調査し、その対策を整流器に施した。現在、改修された整流器を装着した変圧整流器を長時間運転し、対策の妥当性を評価している。
田村 文彦; 吉井 正人*; 大森 千広*; 山本 昌亘; 野村 昌弘; 島田 太平; 長谷川 豪志*; 原 圭吾*
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.808 - 810, 2016/11
J-PARC MRは現在、ニュートリノ実験に約390kWの大強度陽子ビームを供給している。ビームはキッカー電磁石を用いた速い取り出しにより取り出されるが、ビームの取り出し直後に20マイクロ秒程度の短時間空胴電圧が跳ね上がることがわかった。これは、RFフィードフォワード法によるビームローディング補償信号が、ビーム取り出し後も系の遅延時間だけ出続けることが原因である。MRの金属磁性体空胴は、Q値が22と低いために、ビーム負荷の急激な変動に対して10マイクロ秒程度の応答時間で反応してしまう。ビーム強度の増加につれ、電圧の跳ね上がりが増加傾向にあり、この電圧の跳ね上がりは共振用の真空コンデンサの寿命に関連があると考えられるため、対策が必要である。本発表では、跳ね上がりの抑止の結果およびビームローディングの解析について示す。この電圧変化はRCSではより影響が大きいが、RCSへの応用も期待できる。
池田 浩; 菊澤 信宏; 吉位 明伸*; 加藤 裕子
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.637 - 640, 2016/11
J-PARCのLINAC, RCSから得られる制御に必要な大量なデータは、現在PostgreSQLに格納しているが、これをHBaseに格納する計画を進めている。HBaseはいわゆるNoSQLと呼ばれるデータストアで、大量のデータをスケーラブルに扱うことが可能である。HBaseはHadoop上で構築され、両者ともZooKeeperを利用した冗長性の管理が行われている。本格的な運用に先立って、我々のクラスタのHBase/Hadoopのバージョンアップを再度行った。これは、旧バージョンが既にサポート外であること、HBaseのAPIに関する後方互換性の明示的表明、運用開始後はバージョンアップが困難になることが理由として挙げられる。これに伴い、キックスタートや監視スクリプトの修正、これまで作成したツールのアップデートを行った。一方、HBase/Hadoopはデータを堅固に保護するが、そもそもデータを格納できなければこの堅固性は意味を失う。このため、HBase等と同様にZooKeeperを用いてデータ収集ツールを冗長化し、複数ノードに配備することで障害発生時に自動的に対応できるようにした。本発表では、バージョンアップの対応の内容、及び、データ収集ツールの冗長化とその過程で判明した問題について報告する。
栗原 俊一*; 小林 仁*; 杉村 高志*; 平野 耕一郎
Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.814 - 816, 2016/11
照射損傷は加速器の構成要素の各部分に観察される問題である。加速管,スクレーパー,モニター、そして標的と特に陽子加速器,イオン加速器では憂慮される問題である。われわれは、実際の加速器でのその場観察を究極の目標として、加速器で使用される様々な物質の照射損傷、特にブリスタリングの観察を続け、光源としてレーザーを用い、その反射光からの情報により遠方で加速器の動作中のその場観察を行える方法を検討した。観察により得たブリスタリングの生成過程とともに、この観察方法の原理、ならびに適用限界を報告する。