Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 174

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Nuclear fuel cycle, nuclear non-proliferation and nuclear security in Japan, 3; Challenges on technologies for nuclear non-proliferation/nuclear security and progressing credibility

Mochiji, Toshiro; Senzaki, Masao*; Tamai, Hiroshi; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.

Enerugi Rebyu, 40(8), p.56 - 57, 2020/07

Strict application of IAEA safeguards and nuclear security should be implemented for Japan's full-scale nuclear fuel cycle. Based on the knowledge and experience of research and development in the nuclear fuel cycle, nuclear material management, the effective and efficient promotion of new technologies should be promoted with scientific and demonstrative measures to strengthen the world's nuclear non-proliferation and nuclear security. Development or sophistication of new technologies, human resource development, and reinforcement of the international framework are future challenge in the international community.

Journal Articles

Nuclear fuel cycle, nuclear non-proliferation and nuclear security in Japan, 2; Significance of sustainable progress in plutonium-thermal policy and R&D of fast reactor

Mochiji, Toshiro; Senzaki, Masao*; Tamai, Hiroshi; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.

Enerugi Rebyu, 40(7), p.58 - 59, 2020/06

Japan have promoted the peaceful use of plutonium with the nuclear non-proliferation commitment based on IAEA safeguards agreement and Japan-US nuclear cooperation agreement, as well as ensuring transparency of the policy that Japan has no plutonium without purpose of use. In promoting the nuclear fuel cycle, adherence to those measures and maintaining plutonium utilization by means of plutonium-thermal, and a fast reactor cycle to achieve large-scale and long-term energy supply and environmental improvement, therefore, further research and development is essential.

Journal Articles

Nuclear fuel cycle, nuclear non-proliferation and nuclear security in Japan, 1; Peaceful nuclear use and nuclear non-proliferation

Mochiji, Toshiro; Senzaki, Masao*; Tamai, Hiroshi; Iwamoto, Tomonori*; Ishiguro, Yuzuru*; Kitade, Yuta; Sato, Heigo*; Suehiro, Rie*; Taniguchi, Tomihiro*; Fukasawa, Tetsuo*; et al.

Enerugi Rebyu, 40(6), p.58 - 59, 2020/05

In order to promote the peaceful use of nuclear energy, it is important not only to ensure safety but also to ensure nuclear non-proliferation and nuclear security. Japan has contributed to the international community through strengthening nuclear non-proliferation and nuclear security capabilities with technical and human resource development. However, in the wake of the accident at the Fukushima Daiichi Nuclear Power Plant in 2011, Japan's nuclear power plants have not restarted or plutonium use has not progressed smoothly. Concerns have been shown. Towards appropriate steps of Japan's nuclear fuel cycle policy, such concerns are examined and future efforts are summarized.

Journal Articles

Journal Articles

Development of cement based encapsulation for low radioactive liquid waste in Tokai Reprocessing Plant

Matsushima, Ryotatsu; Sato, Fuminori; Saito, Yasuo; Atarashi, Daiki*

Proceedings of 3rd International Symposium on Cement-based Materials for Nuclear Wastes (NUWCEM 2018) (USB Flash Drive), 4 Pages, 2018/10

At TRP, LWTF was constructed as a facility for processing low radioactive liquid waste and solid waste generated at TRP, and a cold test is been carrying out. In this facility, initially, nitrate waste liquid after separation of nuclides generated with treatment of low radioactive liquid waste was to be solidified by using borate. However, at present, it is necessary to decompose the nitrate in the liquid waste to reduce the environmental burden. For the reason, as a plan to replace the nitrate with the carbonate and to make it as a cement based encapsulation, we are studying for the introduction of the facility. Currently, as a cement solidification technology development for this liquid waste, we are studying the application of cement material based on blast furnace slag (BFS) as a main component. In this report, we show the results of the test conducted on the actual scale (200 L drum can scale).

Journal Articles

Naraha Center for Remote Control Technology Development; Enhancement of remote control technology for nuclear decommissioning

Kawabata, Kuniaki

Nippon Robotto Gakkai-Shi, 36(7), p.460 - 463, 2018/09

no abstracts in English

Journal Articles

Challenge to decommissioning of Fukushima Daiichi Nuclear Power Station by applying VR technology

Horiguchi, Kenichi

Gijutsushi, 30(4), p.8 - 11, 2018/04

The verification activity and training of operation in the Fukushima-Daiichi Nuclear Power Station are more important than another Nuclear Power Station. At the JAEA Naraha Remote Technology Development Center, it has being carried out the development work to apply to the decommissioning work by using the full sized mock up and VR system which is built based on location surveying data of inside the reactor building. It is able to contribute to the decommissioning more reliably and efficiently.

Journal Articles

Activities of Naraha Remote Technology and Development Center for decommissioning of Fukushima Daiichi Nuclear Power Station

Tanifuji, Yuta

Genshiryoku Nenkan 2018, p.96 - 97, 2017/10

no abstracts in English

JAEA Reports

Report on analytical activities in potentially hazardous materials mitigation measures at the Plutonium Conversion Development Facility; 2015.12 $$sim$$ 2016.10

Horigome, Kazushi; Taguchi, Shigeo; Ishibashi, Atsushi; Inada, Satoshi; Kuno, Takehiko; Surugaya, Naoki

JAEA-Technology 2017-008, 14 Pages, 2017/05

JAEA-Technology-2017-008.pdf:1.15MB

The plutonium solution had been converted into MOX powder to mitigate the potential hazards of storage plutonium solution such as hydrogen generation at the Plutonium Conversion Development Facility. The plutonium conversion operations had been started in April, 2014, and had been finished in July, 2016. With respect to the samples taken from the conversion process, about 2,200 items of plutonium/uranium solutions and MOX powders had been analyzed for the operation control in the related analytical laboratories at the Tokai Reprocessing Plant. This paper describes the reports on analytical activities and related maintenance works in the analytical laboratories conducted from December, 2015 to October, 2016.

JAEA Reports

Report on analytical activities in potentially hazardous materials mitigation measures at the Plutonium Conversion Development Facility; 2014.4 $$sim$$ 2015.12

Horigome, Kazushi; Suzuki, Hisanori; Suzuki, Yoshimasa; Ishibashi, Atsushi; Taguchi, Shigeo; Inada, Satoshi; Kuno, Takehiko; Surugaya, Naoki

JAEA-Technology 2016-026, 21 Pages, 2016/12

JAEA-Technology-2016-026.pdf:1.14MB

In order to mitigate potential hazards of storage plutonium in solution such as hydrogen generation, conversion of plutonium solution into MOX powder has been carried out since 2014 in the Plutonium Conversion Development Facility. With respect to the samples taken from the conversion process, about 3500 items of plutonium/uranium solutions and MOX powders have been analyzed for the operation control in the related analytical laboratories at the Tokai Reprocessing Plant. This paper describes the reports on analytical activities and related maintenance works in the analytical laboratories conducted from April 2014 to December 2015.

Journal Articles

Basic technology development of advanced non-destructive detection / Measurement of nuclear material for nuclear security and nuclear nonproliferation

Seya, Michio; Naoi, Yosuke; Kobayashi, Naoki; Nakamura, Takahisa; Hajima, Ryoichi; Soyama, Kazuhiko; Kureta, Masatoshi; Nakamura, Hironobu; Harada, Hideo

Kaku Busshitsu Kanri Gakkai (INMM) Nippon Shibu Dai-35-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/01

The Integrated Support Center for Nuclear Non-proliferation and Nuclear Security (ISCN) of Japan Atomic Energy Agency (JAEA) has been conducting (based on collaborations with JAEA other centers) the following basic technology development programs of advanced non-destructive detection/measurement of nuclear material for nuclear security and nuclear non-proliferation. (1) The demonstration test of the Pu-NDA system for spent fuel assembly using PNAR and SINRD (JAEA/USDOE(LANL) collaboration, completed in JFY2013), (2) Basic development of NDA technologies using laser Compton scattered $$gamma$$-rays (Demonstration of an intense mono-energetic $$gamma$$-ray source), (3) Development of alternative to He-3 neutron detection technology, (4) Development of neutron resonance densitometry (JAEA/JRC collaboration)This paper introduces above programs.

JAEA Reports

Progress in JT-60 innovative technologies

Department of Fusion Facilities; Department of Fusion Plasma Research

JAERI-Review 2005-037, 348 Pages, 2005/09

JAERI-Review-2005-037.pdf:39.28MB

no abstracts in English

Journal Articles

Recent technological progress for advanced tokamak research in JT-60U and JFT-2M

Hosogane, Nobuyuki; JT-60 Team; JFT-2M Group

Fusion Science and Technology, 47(3), p.363 - 369, 2005/04

 Times Cited Count:3 Percentile:73.72(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Achievements of element technology development for breeding blanket

Department of Fusion Engineering Research; Department of Materials Science

JAERI-Review 2005-012, 143 Pages, 2005/03

JAERI-Review-2005-012.pdf:11.74MB

no abstracts in English

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2003)

Department of HTTR Project

JAERI-Review 2005-010, 83 Pages, 2005/03

JAERI-Review-2005-010.pdf:5.18MB

The HTTR (High Teperature Engineering Test Reactor) with the thermal power of 30MW and the reactor outlet coolant temperature of 850/950$$^{circ}$$C is the first high temperature gas-cooled reactor (HTGR) in Japan, which uses coated fuel particle, graphite for core components and helium gas for primary coolant. December 2001, the thermal power of 30MW and the reactor outlet coolant temperature of 850$$^{circ}$$C was attained. JAERI received the certificate of pre-operation test, that is, the commissioning licence for the HTTR in March 2002. This report summarizes operation, tests, maintenance, radiation control, and construction of components and facilities for the HTTR as well as R&D on HTGRs for FY2003.

JAEA Reports

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2002)

Department of HTTR Project

JAERI-Review 2003-043, 92 Pages, 2004/02

JAERI-Review-2003-043.pdf:5.76MB

The HTTR (High Temperature Engineering Test Reactor) with the thermal power of 30MW and the reactor outlet coolant temperature of 850/950$$^{circ}$$C is the first high temperature gas cooled reactor in Japan, which uses coated fuel particle, graphite for core components, and helium gas for primary coolant. In December 2001, the rated power of 30MW and the reactor outlet temperature of 850$$^{circ}$$C was attained. JAERI received the certificate of pre-operation test, that is, the commissioning license for the HTTR in March 2002. This report summarizes operation, tests, maintenance, radiation control and construction of components and facilities for the HTTR as well as R&D on HTGRs for FY2002.

Journal Articles

Advanced fusion technologies developed for JT-60 superconducting Tokamak

Sakasai, Akira; Ishida, Shinichi; Matsukawa, Makoto; Akino, Noboru; Ando, Toshinari*; Arai, Takashi; Ezato, Koichiro; Hamada, Kazuya; Ichige, Hisashi; Isono, Takaaki; et al.

Nuclear Fusion, 44(2), p.329 - 334, 2004/02

no abstracts in English

Journal Articles

Advanced fusion technologies developed for JT-60 superconducting Tokamak

Sakasai, Akira; Ishida, Shinichi; Matsukawa, Makoto; Akino, Noboru; Ando, Toshinari*; Arai, Takashi; Ezato, Koichiro; Hamada, Kazuya; Ichige, Hisashi; Isono, Takaaki; et al.

Nuclear Fusion, 44(2), p.329 - 334, 2004/02

 Times Cited Count:7 Percentile:74.9(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Application of ultra-trace analytical method to safeguards

Usuda, Shigekazu

Kagaku To Kyoiku, 51(10), p.612 - 613, 2003/10

no abstracts in English

174 (Records 1-20 displayed on this page)