Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Nuclear Engineering and Technology, 56(3), p.893 - 899, 2024/03
Times Cited Count:1 Percentile:57.00(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2023-020, 90 Pages, 2023/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted from FY2020 to FY2022. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system with high neutron detection efficiency (a few count/nv) under high gamma ray background (1kGy/h). Developed components are neutron detection devices based on diamond sensors and a high radiation resistive signal-processing data-transfer system based on radiation resistive integrated circuit technologies.
Ujita, Hiroshi*; Morimoto, Tatsuya*; Futagami, Satoshi; Yamano, Hidemasa; Kurisaka, Kenichi
Proceedings of PSAM 2023 Topical Conference AI & Risk Analysis for Probabilistic Safety/Security Assessment & Management, 8 Pages, 2023/10
This study is intended to develop PRA methodology using the AI technology. For this purpose, as a first step, the authors have been conducting a three-year program including the development of AI tools for automatic fault tree (FT) creation and automatic fault detection methodology for building reliability database. These AI tools are intended to enable any users to easily perform PRA with the same quality without user effect. For the automatic fault detection method, The AI tool is developed for extracting failure occurrence locations (system/equipment), failure modes, and causes from Japanese reliability databases of NUCIA(for light water reactors) and CORDS(for sodium-cooled fast reactors), and transforming them into a database using AI technologies.
Dong, F.*; Chen, S.*; Demachi, Kazuyuki*; Yoshikawa, Masanori; Seki, Akiyuki; Takaya, Shigeru
Nuclear Engineering and Design, 404, p.112161_1 - 112161_15, 2023/04
Times Cited Count:22 Percentile:99.15(Nuclear Science & Technology)Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 6 Pages, 2023/04
Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2022-031, 89 Pages, 2022/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2021. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under 1 kGy/h and compact-light-weight to fit constraints of the penetration size and the payload. The project aims to design and evaluate neutron detection devices based on diamond sensors and a high radiation resistive signal-processing data-transfer system based on radiation resistive integrated circuit technologies …
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2022-015, 119 Pages, 2022/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. Although laser processing has various advantages, one well-known disadvantage is that it generates a large amount of microparticles during the processing. Therefore, the application of laser processing to decommissioning waste contaminated with radioactive materials has been hesitant because the mechanism generating the microparticles has not been fully understood.
Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2021-042, 115 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor and integrated circuit whose radiation resistance was improved by circuit design.
Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2021-038, 65 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2020. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under high gamma ray radiation environment (i.e. 1 kGy/h maximum) and compact-light-weight to fit constraints of the penetration size and the payload.
Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2020-058, 101 Pages, 2021/02
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies" conducted in FY2019.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2020-031, 69 Pages, 2021/01
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification" conducted in FY2019.
Sato, Yuki; Ozawa, Shingo*; Terasaka, Yuta; Minemoto, Kojiro*; Tamura, Satoshi*; Shingu, Kazutoshi*; Nemoto, Makoto*; Torii, Tatsuo
Journal of Nuclear Science and Technology, 57(6), p.734 - 744, 2020/06
Times Cited Count:28 Percentile:94.67(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*
JAEA-Review 2019-040, 77 Pages, 2020/03
JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies". The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor (200 m
510
m thickness) and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by Japan-UK collaboration) and its demonstration tests will be conducted in a PCV mock-up water tank.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2019-034, 59 Pages, 2020/03
JAEA/CLADS, conducted the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aimed to contribute to solving problems in the field of nuclear energy represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development was promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barriers of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification". Although laser processing has various advantages, one well-known disadvantage is that it generates a large amount of microparticles during the processing. Therefore, the application of laser processing to decommissioning waste contaminated with radioactive materials has been hesitant because the mechanism generating the microparticles has not been fully understood. In this study, the mechanism of microparticle production by laser processing is investigated from fundamentals. Also, we develop a laser on-line principle device to examine the nuclides present in the microparticles that are produced, based on the measurement of the particle size distribution by collecting the microparticles using aerodynamic lenses.
Nancekievill, M.*; Jones, A. R.*; Joyce, M. J.*; Lennox, B.*; Watson, S.*; Katakura, Junichi*; Okumura, Keisuke; Kamada, So*; Kato, Michio*; Nishimura, Kazuya*
IEEE Transactions on Nuclear Science, 65(9), p.2565 - 2572, 2018/09
Times Cited Count:27 Percentile:91.93(Engineering, Electrical & Electronic)In order to contribute to the development of technology to search fuel debris submerged in water inside the primary containment vessel of the Fukushima Daiichi Nuclear Power Station, we are developing a remotely operated vehicle (ROV) system equipped with a compact radiation detector and sonar. A cerium bromide (CeBr) scintillator detector for dose rate monitoring and
ray spectroscopy was integrated into ROV and experimentally validated with a
Cs source, both in the conditions of laboratory and submerged. In addition, the ROV combined with the IMAGENEX 831L sonar could characterize the shape and size of a simulated fuel debris at the bottom of the water pool facility.
Seya, Michio; Hajima, Ryoichi*; Kureta, Masatoshi
Proceedings of INMM 58th Annual Meeting (Internet), 10 Pages, 2017/07
Large size freight cargo containers are the most vulnerable items from nuclear security points of view because of their large volume and weight of cargo inside for hiding heavily shielded objects. For strengthening nuclear security, secure detection of NMs in heavily shielded objects, and safe handling (dismantlement) of detected (suspicious) objects, are essential. These require secure detection of NMs, inspection of detailed interior structures of detected objects, rough characterization of NMs (for nuclear bomb or RDD etc.) and confirmation of existence of explosives etc. By using information obtained by these inspections, safe dismantlement of objects is possible. In this paper, we propose a combination of X-ray scanning system with NRF-based NDD system using monochromatic -ray beam for a secure detection and interior inspections. We also we propose active neutron NDA system using a DT source for interior inspection of NM part.
Awual, M. R.
Chemical Engineering Journal, 266, p.368 - 375, 2015/04
Times Cited Count:709 Percentile:99.93(Engineering, Environmental)Awual, M. R.; Hasan, M. M.*; Naushad, M.*; Shiwaku, Hideaki; Yaita, Tsuyoshi
Sensors and Actuators B; Chemical, 209, p.790 - 797, 2015/03
Times Cited Count:168 Percentile:99.17(Chemistry, Analytical)Akaoka, Katsuaki; Miyabe, Masabumi; Otobe, Haruyoshi; Wakaida, Ikuo
Reza Kenkyu, 42(12), p.918 - 922, 2014/12
For the remote analysis of the next generation nuclear fuel material containing minor actinide (MA), Laser Induced Breakdown Spectroscopy (LIBS) was applied to uranium oxide (UO
) including a small amount of neodymium oxide (Nd
O
) as a simulated sample of MA. By using deconvolution technique for the spectra of Nd in U, the complex, overlapped and confused spectra were separated and their actual intensities were determined. As a result, the calibration curve with good linearity and the detection limit of less than 700 ppm were demonstrated.
Awual, M. R.; Hasan, M. M.*; Ihara, Toshihiro*; Yaita, Tsuyoshi
Microporous and Mesoporous Materials, 197, p.331 - 338, 2014/10
Times Cited Count:188 Percentile:99.00(Chemistry, Applied)