Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 63

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Prediction method for the dose rate of fuel debris depending on the constituent elements

Terashima, Kenichi; Okumura, Keisuke

Journal of Advanced Simulation in Science and Engineering (Internet), 8(1), p.73 - 86, 2021/03

JAEA Reports

Development of extremely small amount analysis technology for fuel debris analysis (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2020-064, 95 Pages, 2021/02

JAEA-Review-2020-064.pdf:9.48MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2019.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2020-058, 101 Pages, 2021/02

JAEA-Review-2020-058.pdf:5.58MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies" conducted in FY2019.

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-053, 64 Pages, 2021/01

JAEA-Review-2020-053.pdf:3.58MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Identification of Altered Phases of Fuel Debris by Laser Fluorescence Spectroscopy" conducted in FY2019.

JAEA Reports

Study on degradation of fuel debris by combined effects of radiological, chemical and biological functions (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-046, 69 Pages, 2021/01

JAEA-Review-2020-046.pdf:4.81MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study on Degradation of Fuel Debris by Combined Effects of Radiological, Chemical, and Biological Functions". In the project, radiochemists, nuclear chemists, nuclear physicists, material scientists, and environmental biologists are teamed to elucidate the mechanism of the degradation of fuel debris by combined effects of radiological, chemical, and biological Functions. In FY2019, the members of the project team focused on literature survey, preliminary experiments, and installation of experimental devices for the planned research.

JAEA Reports

Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-043, 116 Pages, 2021/01

JAEA-Review-2020-043.pdf:7.74MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted in FY2019. In this study, a technique to effectively suppress the scattering of fine particles has been developed, and as a result of experiments, a method of spraying with water mist was found to be an effective and applicable method for improving aerosol removal efficiency and removal rate. As a method of solidifying fuel debris to suppress fine particle scattering during cutting, geopolymer was evaluated for its strength, thermal conductivity and cutting powder. In addition, flow status of geopolymer and the temperature distribution inside RPV covered by geopolymer were simulated.

JAEA Reports

Fluorination method for classification of the waste generated by fuel debris removal (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hitachi-GE Nuclear Energy*

JAEA-Review 2020-034, 155 Pages, 2021/01

JAEA-Review-2020-034.pdf:10.77MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Fluorination Method for Classification of the Waste Generated by Fuel Debris Removal" conducted in FY2019.

JAEA Reports

Basic research on the stability of fuel debris including alloy phase (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2020-032, 97 Pages, 2021/01

JAEA-Review-2020-032.pdf:4.16MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic Research on the Stability of Fuel Debris Including Alloy Phase" conducted in FY2019. In the present study, we focus on fuel debris consisting of oxide phase and alloy phase generated by the high-temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO$$_{2}$$-SUS system and UO$$_{2}$$-Zr(ZrO$$_{2}$$)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water. Also, we will conduct research and development to spectroscopically analyze secular changes of oxide phase and alloy phase in the simulated debris.

Journal Articles

Criticality configuration design methodology applied to the design of fuel debris experiment in the new STACY

Gunji, Satoshi; Tonoike, Kotaro; Clavel, J.-B.*; Duhamel, I.*

Journal of Nuclear Science and Technology, 58(1), p.51 - 61, 2021/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The new critical assembly STACY will be able to contribute to the validation of criticality calculations related to the fuel debris. The experimental core designs are in progress in the frame of JAEA/IRSN collaboration. This paper presents the method applied to optimize the design of the new STACY core to measure the criticality characteristics of pseudo fuel debris that simulated Molten Core Concrete Interaction (MCCI) of the fuel debris. To ensure that a core configuration is relevant for code validation, it is important to evaluate the reactivity worth of the main isotopes of interest and their k$$_{rm eff}$$ sensitivity to their cross sections. In the case of the fuel debris described in this study, especially for the concrete composition, silicon is the nucleus with the highest k$$_{rm eff}$$ sensitivity to the cross section. For this purpose, some parameters of the core configuration, as for example the lattice pitches or the core dimensions, were adjusted using optimization algorithm to find efficiently the optimal core configurations to obtain high sensitivity of silicon capture cross section. Based on these results, realistic series of experiments for fuel debris in the new STACY could be defined to obtain an interesting feedback for the MCCI. This methodology is useful to design other experimental conditions of the new STACY.

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-041, 30 Pages, 2020/12

JAEA-Review-2020-041.pdf:1.9MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of Critical Safety Technology in Fuel Debris Retrieval" conducted in FY2019.

JAEA Reports

Development of hydrogels for prevention of radioactive dust dispersion during fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*

JAEA-Review 2020-030, 55 Pages, 2020/12

JAEA-Review-2020-030.pdf:2.76MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of hydrogels for prevention of radioactive dust dispersion during fuel debris retrieval" conducted in FY2019. In this study, we propose coating fuel debris with thixotropic gel materials to suppress dust dispersion during debris retrieval. Hectorite clay mineral - borax composite gel was selected based on the viscosity, the transparency and the radiation resistance. Simulated cutting tests confirm that the gel coating effectively suppress the dust dispersion.

Journal Articles

Mechanical and thermal properties of Zr-B and Fe-B alloys

Sun, Y.*; Abe, Yuta; Muta, Hiroaki*; Oishi, Yuji*

Journal of Nuclear Science and Technology, 57(8), p.917 - 925, 2020/08

 Times Cited Count:2 Percentile:39.17(Nuclear Science & Technology)

Journal Articles

Chemical forms of uranium evaluated by thermodynamic calculation associated with distribution of core materials in the damaged reactor pressure vessel

Ikeuchi, Hirotomo; Yano, Kimihiko; Washiya, Tadahiro

Journal of Nuclear Science and Technology, 57(6), p.704 - 718, 2020/06

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

To suggest efficient process of the fuel debris treatment after the retrieval from the Fukushima Daiichi Nuclear Power Plant (1F), thorough investigation is indispensable on potential source of U in the fuel debris. Estimation on the fuel debris accumulated in the reactor pressure vessel is specifically important due to its limited accessibility. The present study aims to estimate the chemical forms of U in the in-vessel fuel debris, especially in the minor phases such as metallic phases, by performing the thermodynamic calculation considering the material relocation and changing environment during the accident progression in the 1F Unit 2. Input conditions for the thermodynamic calculation such as composition, temperature, and oxygen amount were assumed mainly based on the results of severe accident analysis. The chemical form of U varied depending on the local amount of Fe and O. In regions of low steel content, the U-containing metallic phase was dominated by $$alpha$$-(Zr,U)(O), while regions of high steel content were dominated by Fe$$_{2}$$(Zr,U) (Laves phase). A few percent of U was transferred to the metallic phases under reducing conditions, raising challenging issues on the chemical removal of nuclear material from fuel debris.

Journal Articles

Gamma detector response simulation inside the pedestal of Fukushima Daiichi Nuclear Power Station

Riyana, E. S.; Okumura, Keisuke; Terashima, Kenichi; Matsumura, Taichi; Sakamoto, Masahiro

Mechanical Engineering Journal (Internet), 7(3), p.19-00543_1 - 19-00543_8, 2020/06

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2019-040, 77 Pages, 2020/03

JAEA-Review-2019-040.pdf:4.61MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies". The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor (200 $$mu$$m $$times$$ 510 $$mu$$m thickness) and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by Japan-UK collaboration) and its demonstration tests will be conducted in a PCV mock-up water tank.

JAEA Reports

Development of technology to prevent scattering of radioactive materials in fuel debris retrieval (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-037, 90 Pages, 2020/03

JAEA-Review-2019-037.pdf:7.0MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology to Prevent Scattering of Radioactive Materials in Fuel Debris Retrieval". The objective of the present study is to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles at the time of debris retrieval in Fukushima Daiichi Nuclear Power Station. In addition, as measures to prevent scattering, we will evaluate and develop methods by experiments and simulation as to; (1) a method to suppress the scattering with minimum amount of water utilizing water spray etc., and (2) a method to suppress the scattering by solidifying fuel debris.

JAEA Reports

Basic research on the stability of fuel debris including alloy phase (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2019-035, 61 Pages, 2020/03

JAEA-Review-2019-035.pdf:2.9MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Basic Research on the Stability of Fuel Debris Including Alloy Phase". In the present study, we focus on fuel debris consisting of oxide phase and alloy phase generated by the high-temperature chemical reaction between structure materials (SUS pipes, pressure vessels, etc.) and fuels (melted fuels, claddings components, etc.). We synthesize the simulated debris of UO$$_{2}$$-SUS system and UO$$_{2}$$-Zr(ZrO$$_{2}$$)-SUS system by high-temperature heat treatment, and measure their chemical property and dissolution behavior in water. Also, we will conduct research and development to spectroscopically analyze secular changes of oxide phase and alloy phase in the simulated debris.

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research) FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-030, 66 Pages, 2020/03

JAEA-Review-2019-030.pdf:7.11MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Identification of Altered Phases of Fuel Debris by Laser Fluorescence Spectroscopy". In the present study, we focus on uranium that is the main component element in debris, and identify the altered phase produced on the debris surface under various conditions by time-resolved laser fluorescence spectroscopy (TRLFS) with high sensitivity to hexavalent uranium (U(VI)) that is stable in oxidation environment. In particular, further high-sensitive and high-resolution measurements are implemented by improving the fluorescence yields and suppressing the broadening of the peaks through the measurements at ultra-low temperature. In addition, with the supports by quantum chemical calculations, multivariate analysis, and machine learning, the method will lead to the identification of multicomponent and heterogeneous altered phase of fuel debris.

Journal Articles

Advances in fuel chemistry during a severe accident; Update after Fukushima Daiichi Nuclear Power Station (FDNPS) accident

Kurata, Masaki; Osaka, Masahiko; Jacquemain, D.*; Barrachin, M.*; Haste, T.*

Advances in Nuclear Fuel Chemistry, p.555 - 625, 2020/00

The importance of fuel chemistry has been revivaled since Fukushima-Daiichi Nuclear Power Station (FDNPS) accident. The inspection and analysis of damaged three units, which had been operated in March 11, 2011, showed large differences in the accident progression sequence for these units, because operators attempted to prevent or mitigate the accident progression of each unit by all means possible. Characteristics of fuel debris are considered to be largely influenced by the difference in the sequence and, hence, deviated from those predicted from prototypic accident scenarios, which had been mainly identified from the analysis of Three Mile Island-2 (TMI-2) accident and the following sim-tests. For the proper improvement of our knowledge on severe accident (SA), including non-prototypic conditions, one has to start improving the phenomenology of fuel/core degradation and fission product (FP) behavior. Advances in the chemistry is the most essential approach. The present review attempts to focus on the recent updates and remaining concerns after the FDNPS accident.

Journal Articles

Current situation of OECD/NEA, Preparatory Study on Analysis of Fuel debris (PreADES) project

Nakayoshi, Akira; Journeau, C.*; Rempe, J. L.*; Barrachin, M.*; Bottomley, D.; Nauchi, Y.*; Song, J. H.*

Proceedings of 2019 International Workshop on Post-Fukushima Challenges on Severe Accident Mitigation and Research Collaboration (SAMRC 2019) (USB Flash Drive), 6 Pages, 2019/11

63 (Records 1-20 displayed on this page)