検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Development of a radiation tolerant laser-induced breakdown spectroscopy system using a single crystal micro-chip laser for remote elemental analysis

遠隔元素分析のための単結晶マイクロチップレーザーを用いた耐放射線性レーザー誘起ブレークダウン分光システムの開発

田村 浩司; 中西 隆造; 大場 弘則  ; 狩野 貴宏 ; 柴田 卓弥  ; 平等 拓範*; 若井田 育夫  

Tamura, Koji; Nakanishi, Ryuzo; Oba, Hironori; Karino, Takahiro; Shibata, Takuya; Taira, Takunori*; Wakaida, Ikuo

For the development of the remote elemental analysis method in a radiation environment based on the laser-induced breakdown spectroscopy (LIBS), the radiation effects on the laser oscillation properties of the single crystal (SC) Nd: YAG microchip laser (MCL) were investigated and compared with those of ceramics Nd: YAG MCL. The laser oscillation properties were measured under gamma-ray irradiation as a function of dose rate. The effects on the SC MCL properties were found to be very small compared to those on the ceramics, indicating minimal radiation effects on the LIBS signal when using SC MCL. Pulse energy and oscillating build-up time (BUT) were measured for a cumulative dose exceeding 1400 kGy. The pulse energy remained stable, and the laser continued to oscillate under irradiation. The BUT also remained stable, demonstrating negligible optical loss accumulation that could affect laser properties even at the demonstrated cumulative dose. The results indicate that the effects of dose rate and cumulative dose on SC MCL laser properties were minimal. The SC MCL was then integrated into the LIBS system, and the gadolinium signal of composite oxides, simulating fuel debris, was successfully measured at the dose rate of 5 kGy/hr. These findings highlight the radiation tolerance of SC MCL as a laser medium for remote LIBS applications in harsh radiation environments.

Access

:

- Accesses

InCites™

:

パーセンタイル:0.01

分野:Nuclear Science & Technology

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.