Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zhao, Y.*; Suzuki, T.*; Iimori, T.*; Kim, H.-W.*; Ahn, J. R.*; 堀尾 眞史*; 佐藤 祐輔*; 深谷 有喜; Kanai, T.*; Okazaki, K.*; et al.
Physical Review B, 105(11), p.115304_1 - 115304_8, 2022/03
被引用回数:1 パーセンタイル:6.98(Materials Science, Multidisciplinary)本研究では、時間・角度分解光電子分光を用いて、SiC基板上に作製したグラフェン層におけるキャリアダイナミクスについて調べた。光ポンピング後の準結晶グラフェンのディラックバンドでは、電子ドーピングに層依存性が観測された。また、光誘起キャリア輸送量は基板からの距離に依存することがわかった。フラット基板及びステップ基板上の単層グラフェンの結果から、キャリアの生成源は界面のステップ状態に由来することがわかった。本メカニズムは、密度汎関数計算による電子構造を基にした動的モデルにより記述できる。
深谷 有喜; Zhao, Y.*; Kim, H.-W.*; Ahn, J.-R.*; 吹留 博一*; 松田 巌*
Physical Review B, 104(18), p.L180202_1 - L180202_5, 2021/11
被引用回数:17 パーセンタイル:70.83(Materials Science, Multidisciplinary)2層グラフェンはねじれ角に応じて多彩な物性を発現する。30のねじれ角を持つ2層グラフェンでは、相対論的ディラックフェルミオンを有する二次元準結晶となる。本研究では、陽電子回折を用いて、SiC(0001)基板上に合成したグラフェン準結晶の原子配置を解明した。グラフェン準結晶の層間隔は3.46
であり、通常のAB積層型に比べ0.17
広がることがわかった。この値は、グラフェン間のカップリングの強さを決定するうえで重要なパラメーターとなる。
長谷川 美佳*; 菅原 健太*; 須藤 亮太*; 三本菅 正太*; 寺岡 有殿; 吉越 章隆; Filimonov, S.*; 吹留 博一*; 末光 眞希*
Nanoscale Research Letters, 10, p.421_1 - 421_6, 2015/10
被引用回数:21 パーセンタイル:60.72(Nanoscience & Nanotechnology)グラフェンは、電子および光デバイスの有望な材料として注目されている。しかしながら、Si上のグラフェン(GOS)の形成には1473K以上の温度が必要となるため、Siテクノロジーとの相性は良いとは言えない。ここでは、Ni援用GOSのグラフェン形成に関して報告する。グラフェン形成温度が200K以上低下することを示し、加熱、アニール、冷却プロセス中の固相反応を放射光XPSで詳細に調べた。Ni/SiC反応の役割、Niシリサイド形成ばかりでなく炭化Ni形成がグラフェン形成に重要なプロセスであることを明にした。
末光 眞希*; 吹留 博一*; 寺岡 有殿
NanotechJapan Bulletin (インターネット), 7(2), 5 Pages, 2014/04
Si基板上に形成した3C-SiC薄膜を高温アニールすることで、安価、大口径のSi基板上に高品質グラフェンを再現性よく形成できるグラフェン・オン・シリコン(GOS)技術を開発した。界面および積層関係のよく定義されたGOSグラフェンは、従来の高価なSiC基板上に形成したエピグラフェン(EG)と基本的に同一の界面・積層構造を有することが、文部科学省先端研究施設共用イノベーション創出事業、および、ナノテクノロジープラットフォーム事業による放射光・高分解能光電子分光法(SR-XPS)の共用によって明らかにされた。また微量酸素の添加によってグラフェン化温度が従来より200-300C低減できることもSR-XPS法によって確認された。
井出 隆之*; 川合 祐輔*; 半田 浩之*; 吹留 博一*; 小嗣 真人*; 大河内 拓雄*; 遠田 義晴*; 木下 豊彦*; 吉越 章隆; 寺岡 有殿; et al.
Japanese Journal of Applied Physics, 51(6), p.06FD02_1 - 06FD02_4, 2012/06
被引用回数:7 パーセンタイル:29.19(Physics, Applied)Epitaxy of graphene on 3C-SiC(111) formed on microfabricated Si(111) has been demonstrated. Through observations with optical microscopy, micro-Raman spectroscopy, low-energy-electron diffraction, and photoelectron spectroscopy, it is confirmed that the epitaxial graphene is Bernal-stacked with a buffer layer present between the graphene and the 3C-SiC film, which can lead SiC film, which can lead to opening of the band gap necessary for logic operations. The quality of the graphene is improved with the shrinkage of patterned terrace. These results indicate that GOS using substrate microfabrication is a promising method for the realization of graphene-based devices.
吹留 博一*; 阿部 峻佑*; 高橋 良太*; 今泉 京*; 猪俣 州哉*; 半田 浩之*; 齋藤 英司*; 遠田 義晴*; 吉越 章隆; 寺岡 有殿; et al.
Applied Physics Express, 4(11), p.115104_1 - 115104_3, 2011/11
被引用回数:36 パーセンタイル:77.75(Physics, Applied)Epitaxial graphene on Si (GOS) using a heteroepitaxy of 3C-SiC/Si has attracted recent attention owing to its capability to fuse graphene with Si-based electronics. We demonstrate that the stacking, interface structure, and hence, electronic properties of GOS can be controlled by tuning the surface termination of 3C-SiC(111)/Si, with a proper choice of Si substrate and SiC growth conditions. On the Si-terminated 3C-SiC(111)/Si(111) surface, GOS is Bernal-stacked with a band splitting, while on the C-terminated 3C-SiC(111)/Si(110) surface, GOS is turbostratically stacked without a band splitting. This work enables us to precisely control the electronic properties of GOS for forthcoming devices.
吹留 博一*; 高橋 良太*; 阿部 峻佑*; 今泉 京*; 半田 浩之*; Kang, H. C.*; 唐澤 宏美*; 末光 哲也*; 尾辻 泰一*; 遠田 義晴*; et al.
Journal of Materials Chemistry, 21(43), p.17242 - 17248, 2011/11
被引用回数:29 パーセンタイル:62.59(Chemistry, Physical)Graphene is a promising material in the next-generation devices. Large-scale epitaxial graphene should be grown on Si substrates to take over the accumulated technologies for integrated devices. We have for this reason developed epitaxy of graphene on Si (GOS) and device operation of the backgate field-effect transistors (FETs) using GOS has been confirmed. It is demonstrated in this paper that the GOS method enables us to tune the structural and electronic properties of graphene in terms of the crystallographic orientation of the Si substrate. Furthermore, it is shown that the uniformity of the GOS process within a sizable area enables us to reliably fabricate topgate FETs using conventional lithography techniques. GOS can be thus the key material in the next-generation devices owing to the tunability of the electronic structure by the crystallographic orientation of the Si substrate.
今泉 京*; 半田 浩之*; 高橋 良太*; 齋藤 英司*; 吹留 博一*; 遠田 義晴*; 寺岡 有殿; 吉越 章隆; 末光 眞希*
Japanese Journal of Applied Physics, 50(7), p.070105_1 - 070105_6, 2011/07
被引用回数:4 パーセンタイル:18.25(Physics, Applied)In the solid-vapor phase equilibria between SiC and O system, there exists a region where the reaction of O
with SiC takes place. By tuning the temperature and the oxygen pressure used in the graphitization annealing, we have succeeded in the growth of epitaxial graphene on SiC crystals at 1273 K, which is lower by 250
C or more than the conventional epitaxial graphene method. The method is especially useful to form an epitaxial graphene on a silicon substrate (GOS), which requires a lower graphitization temperature because of necessity of compatibility with conventional Si technologies.
高橋 良太*; 半田 浩之*; 阿部 峻佑*; 今泉 京*; 吹留 博一*; 吉越 章隆; 寺岡 有殿; 末光 眞希*
Japanese Journal of Applied Physics, 50(7), p.070103_1 - 070103_6, 2011/07
被引用回数:32 パーセンタイル:74.73(Physics, Applied)Epitaxial graphene can be formed on silicon substrates by annealing a 3C-SiC film formed on a silicon substrate in ultrahigh vacuum (G/3C-SiC/Si). In this work, we explore the graphitization process on the 3C-SiC(111)/Si(111) surface by using low-energy electron diffraction and X-ray photoelectron spectroscopy (XPS) and compare them with that on 6H-SiC(0001). Upon annealing at substrate temperature higher than 1423 K, the 3C-SiC(111)/Si(111) surface follows the sequence of ()R30
, (6
6
)R30
and (1
1)
in the surface structures. The C 1s core level according to XPS indicates that a buffer layer, identical with that in G/6H-SiC(0001), exists at the G/3C-SiC(111) buffer. These observations strongly suggest that graphitization on the surface of the 3C-SiC(111) face proceeds in a similar manner to that on the Si-terminated hexagonal bulk SiC crystals.
原本 直樹*; 猪俣 州哉*; 高橋 良太*; 吉越 章隆; 寺岡 有殿; 吹留 博一*; 末光 眞希*
no journal, ,
シリコン基板上に形成するグラフェンの品質を制限する最大の要因はSiと3C-SiC結晶の間に存在する約20%の格子不整合である。これを克服してエピタキシャル成長3C-SiC薄膜の膜質を向上させる方法として微傾斜Si基板の使用がある。微傾斜Si基板上のX線回折ピークの半値幅がon-axis Si基板上のそれと比較して約13%減少することから、微傾斜基板上の3C-SiCの結晶性が向上することが明らかになった。グラフェンの欠陥を表すラマン散乱ピークは、微傾斜Si基板上のグラフェンの方がon-axis Si基板上のそれよりも小さくなることから、高品質な3C-SiC薄膜及びグラフェンが形成されることが明らかになった。今回、微傾斜Si(111)基板を用いることで、3C-SiC(111)薄膜の膜質向上、及び、その上に形成したエピタキシャルグラフェンの品質向上を確認した。
長谷川 美佳*; 須藤 亮太*; 菅原 健太*; 三本菅 正太*; 原本 直樹*; 寺岡 有殿; 吉越 章隆; 吹留 博一*; 末光 眞希*
no journal, ,
Si基板上SiC薄膜のグラフェン化にNi援用法を適用し、Si基板上エピタキシャルグラフェンの低温形成に成功するとともに、Ni原子が関わる低温グラフェン化機構を明らかにした。p型Si(111)基板上にSiC(111)薄膜を成膜し、Niを電子ビーム蒸着した後、850C30分の真空加熱を行った。冷却時にグラフェンが出現することが確認され、Ni援用により850
Cいう低温でSi基板上にエピタキシャルグラフェン形成が可能であることを確認した。SiC結晶表面のNi援用グラフェン形成においては、Niとの反応によりSiCから供給されたC原子が表面近傍でNi原子と結合してNi
CやNiC
を、また、SiC界面近傍でグラフェンを形成することを明らかにした。
長谷川 美佳*; 吉越 章隆; 菅原 健太*; 須藤 亮太*; 三本菅 正太*; 寺岡 有殿; 吹留 博一*; 末光 眞希*
no journal, ,
Si基板上にエピタキシャル成長した3C-SiC上に2nmほどNiを堆積するとグラフェンを低温(1073K)形成できる。角度分解放射光XPSの結果から、炭化Ni(NiC/NiCx)/グラフェン/Ni/Niシリサイド(Ni
Si/NiSi)/3C-SiC/Siの堆積層を形成することが分かった。グラファイト化熱処理中のその場放射光XPSによって、グラフェンが冷却中に形成されることが分かった。Niシリサイドと炭化Ni形成がグラフェン形成に重要な役割をもつと結論した。
深谷 有喜; Zhao, Y.*; Kim, H.-W.*; Ahn, J.-R.*; 吹留 博一*; 松田 巌*
no journal, ,
30のねじれ角を持って積層した二層グラフェンは、ディラックフェルミオンを有する2次元準結晶材料として注目されている。本研究では、全反射高速陽電子回折を用いて、SiC基板上に作製したグラフェン準結晶の原子配置を調べた。動力学的回折理論に基づく構造解析から、グラフェン準結晶の層間距離を3.46
と決定した。この値は、通常(AB積層)の二層グラフェンのもの(3.29
)に比べて0.17
大きい。層間隔の広がりは、グラフェン準結晶におけるグラフェン層間のカップリングの強さの理解に貢献する。
今泉 京*; 高橋 良太*; 半田 浩之*; 齋藤 英司*; 吹留 博一*; 末光 眞希*; 寺岡 有殿; 吉越 章隆
no journal, ,
われわれはSiC表面と酸素分子の温度・圧力反応図に注目し、酸素ガス雰囲気で1273Kという低温でSiC表面のグラフェン化が可能であることを見いだしている。今回われわれは超低圧酸素雰囲気下でのグラフェン形成過程を、放射光光電子分光法を用いたリアルタイム測定により評価した。Si(111)基板上にモノメチルシランを原料ガスに用いて成膜した3C-SiC(111)薄膜を用い、SPring-8 BL23SUにてリアルタイム放射光光電子分光測定を行った。反応時間の経過とともにsp2炭素に起因するC1sピーク成分が増大し、SiC薄膜表面のグラフェン化が進行していることが明らかになった。
高橋 良太*; 宮本 優*; 半田 浩之*; 齋藤 英司*; 今泉 京*; 吹留 博一*; 末光 眞希*; 寺岡 有殿; 吉越 章隆
no journal, ,
シリコン電子デバイス開発ではCMOS技術の後の新しい技術を確立することが急務となっている。そこで、大きな移動度を持つグラフェンが大きな注目を集めている。6H-SiC基板表面を真空中で加熱することにより、Siを昇華させ、表面をグラフェン化する技術は知られている。われわれはSi基板上に高品質の3C-SiC極薄膜をエピタキシャル成長させ、真空熱処理することでSi基板上にグラフェンを形成するグラフェン・オン・シリコン(GOS)法を開発した。今回、6H-SiC(0001)面と、表面構造がそれと類似する3C-SiC(111)面のグラフェン化過程をLEED観察した。3C-SiC(111)薄膜上のグラフェン形成過程は、6H-SiC(0001)基板上のグラフェン形成過程と全く同一の表面再配列構造を経ることがわかった。
末光 眞希*; 吹留 博一*; 高橋 良太*; 今泉 京*; 半田 浩之*; 吉越 章隆; 寺岡 有殿
no journal, ,
Si基板上でのSiC薄膜の形成とその後の加熱によって最表面層はグラフェン化する(グラフェン=オン=シリコン;GOS)。通常はSi(111), (110), (100)基板上に3C-SiC(111), (110), (100)層が形成される。3C-SiC(111)ばかりでなく3C-SiC(100)と(110)でもエピタキシャルグラフェン層が形成された。ラマンスペクトルでは三つの面方位で同じバンドが観測され、放射光光電子分光によるC1s光電子スペクトルではsp炭素が存在することがわかった。SiC(100)と(110)では界面層は存在しないが、SiC(111)ではグラフェンとSiC(111)の間に界面層が存在する。以上のように三つの低指数面のSiC上でグラフェンが成長することは、ポストSiデバイス開発におけるGOS技術の有用性を示すことになった。
吹留 博一*; 高橋 良太*; 宮本 優*; 半田 浩之*; Kang, H. C.*; 唐澤 宏美*; 末光 哲也*; 尾辻 泰一*; 吉越 章隆; 寺岡 有殿; et al.
no journal, ,
Si基板上にSiCを形成し、その最表面を熱的にグラフェンに変化させると、Si基板上にグラフェン層がエピタキシャル成長する(グラフェン=オン=シリコン;GOS)。このグラフェン形成ではSi基板上にまずSiCをガスソース分子線エピタキシー法でエピ成長させる。通常はSi(111), (110), (100)基板上に3C-SiC(111), (110), (100)面が成長する。それらを超高真空中で1523Kに加熱することでSi原子を昇華させてSiC表面を炭化させる。3C-SiC(111)ばかりでなく3C-SiC(100)と(110)でもグラフェンが形成されることがラマン散乱分光と放射光光電子分光で明らかになった。ラマンスペクトルではD, G, G'バンドが観測され、C1s光電子スペクトルではspが観測された。このように三つの表面で等しくグラフェン成長に成功したことは、ポストSi技術開発でGOS技術が有効であることを示唆している。
長谷川 美佳*; 菅原 健太*; 須藤 亮太*; 三本菅 正太*; 原本 直樹*; 寺岡 有殿; 吉越 章隆; 吹留 博一*; 末光 眞希*
no journal, ,
Si基板上SiC薄膜の加熱グラフェン化にNi援用法を適用することで、Si基板上エピタキシャルグラフェンの低温形成に成功した。グラフェン評価にはラマン散乱分光法を、形成過程評価にはSPring-8のBL23SU表面化学実験ステーションにおけるX線光電子分光法を用いた。Niシリサイドの形成が加熱開始から冷却までの間に絶えず進行していること、とくに冷却時にシリサイド形成が加速され、その際にグラフェン形成が進行することが分かった。1073K以上で生ずるNiのシリサイド化によって過剰C原子が 供給され、基板冷却の間にNiのシリサイド化と同時にグラフェンが形成すると考えられる。
長谷川 美佳*; 菅原 健太*; 須藤 亮太*; 三本菅 正太*; 原本 直樹*; 寺岡 有殿; 吉越 章隆; 吹留 博一*; 末光 眞希*
no journal, ,
Si基板上SiC薄膜の加熱グラフェン化にNi援用法を適用することで、Si基板上エピタキシャルグラフェンの低温形成に成功した。グラフェン評価にはラマン散乱分光法を、形成過程評価にはSPring-8のBL23SU表面化学実験ステーションにおけるX線光電子分光法を用いた。Niシリサイドの形成が加熱開始から冷却までの間に絶えず進行していること、とくに冷却時にシリサイド形成が加速され、その際にグラフェン形成が進行することが分かった。1073K以上で生ずるNiのシリサイド化によって過剰C原子が 供給され、基板冷却の間にNiのシリサイド化と同時にグラフェンが形成すると考えられる。
今泉 京*; 高橋 良太*; 宮本 優*; 半田 浩之*; 齋藤 英司*; 吹留 博一*; 末光 眞希*; 寺岡 有殿; 吉越 章隆
no journal, ,
カーボン原子層の2次元結晶であるグラフェンは、300,000cm/V/sという高移動度を示すため、次世代デバイス材料として大きな注目を集めている。グラフェンの実用化に関しては、Si基板上SiC薄膜の熱改質によりシリコン基板上にグラフェンを形成するグラフェン・オン・シリコン(GOS)技術が一つの有力な解である。しかしGOSプロセスを含めた従来技術では、グラフェン形成温度が1523
1573Kと高いために、これを直ちにシリコンデバイスプロセスに導入することは困難である。われわれはYongwei Songらが報告したSiC表面と酸素分子の温度・圧力反応図に注目し、グラフェン化アニール雰囲気への微量酸素の添加により、1273Kという低温でSiC表面のグラフェン化に成功した。