Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 4411

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Uranium-plutonium-oxygen phase diagram; Investigating the solvus of fluorite's exsolution

Vauchy, R.; Hirooka, Shun; Horii, Yuta; Ogasawara, Masahiro*; Sunaoshi, Takeo*; Yamada, Tadahisa*; Tamura, Tetsuya*; Murakami, Tatsutoshi

Journal of Nuclear Materials, 599, p.155233_1 - 155233_11, 2024/10

The fluorite exsolution/recombination in U$$_{1-y}$$Pu$$_{y}$$O$$_{2-x}$$ (y = 0.30 and 0.45) and PuO$$_{2-x}$$ was investigated using differential scanning calorimetry. The results are in relatively good agreement with the literature data, except for plutonia. Our values indicate that the critical temperature of the miscibility gap in Pu-O is 30$$sim$$50 K lower than previously reported. Finally, the systematic experimental procedure allowed us refining the locus of the solvus existing in hypostoichiometric U$$_{0.70}$$0Pu$$_{0.30}$$O$$_{2-x}$$, U$$_{0.55}$$Pu$$_{0.45}$$O$$_{2-x}$$, and PuO$$_{2-x}$$ dioxides.

Journal Articles

Quantifying uncertainty induced by scattering angle distribution using maximum entropy method

Maruyama, Shuhei; Yamamoto, Akio*; Endo, Tomohiro*

Annals of Nuclear Energy, 205, p.110591_1 - 110591_13, 2024/09

Journal Articles

Journal Articles

Enthalpy measurement on (U$$_{1-x}$$Pu$$_{x}$$)O$$_{2}$$ (x = 0, 0.18, 0.45, and 1) and analysis of heat capacity

Hirooka, Shun; Morimoto, Kyoichi; Matsumoto, Taku; Ogasawara, Masahiro*; Kato, Masato; Murakami, Tatsutoshi

Journal of Nuclear Materials, 598, p.155188_1 - 155188_9, 2024/09

no abstracts in English

JAEA Reports

Trial analysis of chemical behavior in high-level radioactive liquid waste tank at accident of evaporation to dryness by boiling of reprocessing plant

Yoshida, Kazuo; Hiyama, Mina*; Tamaki, Hitoshi

JAEA-Research 2024-007, 24 Pages, 2024/08

JAEA-Research-2024-007.pdf:2.1MB

An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. It has been observed experimentally that volatility of RuO$$_{4}$$ is suppressed by HNO$$_{2}$$ generated by HNO$$_{3}$$ radiolysis. The analysis of chemical reactions of NO$$_{x}$$ including HNO$$_{3}$$ and HNO$$_{2}$$ in the waste tank is essential to simulate of these phenomena. To resolve this issue, an analytical approach has been attempted to couple dynamically two computer codes SHAWED and SCHERN. The simulation of boiling behavior in the tank is conducted with SHAWED. SCHERN simulates chemical behaviors of HNO$$_{3}$$, HNO$$_{2}$$ and NO$$_{x}$$ in the tank. A programmatic coupling algorithm and a trial simulation of the accident are presented in this report.

Journal Articles

Current status of high temperature gas-cooled reactor development in Japan

Nagatsuka, Kentaro; Noguchi, Hiroki; Nagasumi, Satoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Nishihara, Tetsuo; Sakaba, Nariaki

Nuclear Engineering and Design, 425, p.113338_1 - 113338_11, 2024/08

HTGR has a potential to contribute to decarbonization of hard-to-abate industries by supplying a large amount of hydrogen and high temperature heat or steam without carbon dioxide emission. JAEA has been conducting R&Ds for HTGR technologies with High Temperature Engineering Test Reactor (HTTR). This paper shows that HTTR's tests including the loss of core cooing test as a joint the OECD/NEA international research project and a HTTR heat application test plan which demonstrate hydrogen production by coupling the HTTR with a hydrogen production test facility. Additionally, aiming for operation start from the latter half of 2030s, the basic design of the HTGR demonstration reactor has been shown. The Japan's HTGR technology capabilities established by the HTTR project will be fully utilized for the construction of HTGR demonstration reactor.

JAEA Reports

GPV2OSC, meteorological data format conversion program for OSCAAR

Risk Analysis Research Group, Reactor Safety Research Division, Nuclear Safety Research Center

JAEA-Data/Code 2024-006, 40 Pages, 2024/07

JAEA-Data-Code-2024-006.pdf:1.92MB

The Risk Analysis Research Group, Reactor Safety Research Division, Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness, Japan Atomic Energy Agency has been developing OSCAAR, a probabilistic risk assessment program for nuclear facility accidents. OSCAAR has the feature to calculate atmospheric concentrations of radioactive materials using an atmospheric dispersion model. This feature requires the input of meteorological data about wind speed, precipitation rate, atmospheric stability and so on. However, to use numerical weather prediction data created from the Japan Meteorological Agency (JMA) on OSCAAR, it is necessary to convert the data format to match OSCAAR input format in advance. Therefore, we developed GPV2OSC, a pre-processing program for OSCAAR, to create meteorological data converted from JMA weather prediction data format to OSCAAR input format when the target region and period are specified. This report describes the outline and usage of GPV2OSC.

Journal Articles

Sintering behavior analysis of compacted dry recycled U$$_{0.7}$$Pu$$_{0.3}$$O$$_{2}$$ powder using master sintering curve theory

Nakamichi, Shinya; Sunaoshi, Takeo*; Hirooka, Shun; Vauchy, R.; Murakami, Tatsutoshi

Journal of Nuclear Materials, 595, p.155072_1 - 155072_11, 2024/07

Journal Articles

The Development of Petri Net-based continuous Markov Chain Monte Carlo methodology applying to dynamic probability risk assessment for multi-state resilience systems with repairable multi-component interdependency under longtermly thereat

Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi

Journal of Nuclear Science and Technology, 61(7), p.935 - 957, 2024/07

 Times Cited Count:1 Percentile:63.33(Nuclear Science & Technology)

Journal Articles

Study on $$^{99m}$$Tc separation/concentration technology from $$^{99}$$Mo by (n, $$gamma$$) method, 2

Fujita, Yoshitaka; Hu, X.*; Yang, Y.*; Kitagawa, Taiga*; Fujihara, Yasuyuki*; Yoshinaga, Hisao*; Hori, Junichi*; Do, T. M. D.*; Suzuki, Tatsuya*; Suematsu, Hisayuki*; et al.

KURNS Progress Report 2023, P. 122, 2024/07

no abstracts in English

Journal Articles

High temperature nanoindentation of (U,Ce)O$$_{2}$$ compounds

Frazer, D.*; Saleh, T. A.*; Matsumoto, Taku; Hirooka, Shun; Kato, Masato; McClellan, K.*; White, J. T.*

Nuclear Engineering and Design, 423, p.113136_1 - 113136_7, 2024/07

Nanoindentation based techniques can be employed on minute volumes of material to measure mechanical properties, including Young's modulus, hardness, and creep stress exponents. In this study, (U,Ce)O$$_{2}$$ solid solutions samples are used to develop elevated temperature nanoindentation and nanoindentation creep testing methods for use on mixed oxide fuels. Nanoindentation testing was performed on 3 separate (Ux-1,Cex)O$$_{2}$$ compounds ranging from x equals 0.1 to 0.3 at up to 800 $$^{circ}$$C: their Young's modulus, hardness, and creep stress exponents were evaluated. The Young's modulus decreases in the expected linear manner while the hardness decreases in the expected exponential manner. The nanoindentation creep experiments at 800 $$^{circ}$$C give stress exponent values, n=4.7-6.9, that suggests dislocation motion as the deformation mechanism.

Journal Articles

A Numerical study on machine-learning-based ultrasound tomography of bubbly two-phase flows

Wada, Yuki; Hirose, Yoshiyasu; Shibamoto, Yasuteru

Ultrasonics, 141, p.107346_1 - 107346_16, 2024/07

JAEA Reports

A Proposed regulatory framework for small modular reactors

Nuclear System Technology Review Committee

JAEA-Review 2024-018, 38 Pages, 2024/06

JAEA-Review-2024-018.pdf:1.46MB

In the R&D activities related to the Ministry of Education, Culture, Sports, Science and Technology's Innovative Nuclear R&D Program, "Development of Integrated Energy System Simulation Method Utilizing Small Modular Reactors for Enhanced System Decarbonization and Resilience," Japan Atomic Energy Agency (JAEA) established the "Nuclear System Technology Review Committee," consisting of experts in the subject areas, to obtain advice on the feasibility of deploying Design-standardized, Factory-built, Site-independent Small Modular Reactors (DFS-SMRs) in Japan and other countries. The Committee met three times during the 2021-2024 project period to discuss proposals for a regulatory framework for the potential commercial deployment of DFS-SMRs in Japan. The starting point for the Committee's discussions was the view that Japan's nuclear regulatory framework, like most other countries with existing commercial nuclear power plants in operation, focuses on large Light Water Reactors. Another consideration was the Committee's view on the basic structure of the regulatory framework, consistent with other regulatory initiatives around the world. Specifically, that the most effective regulatory frameworks need to be less prescriptive, less technology-dependent, and more performance-based. This report focuses on the United States, which has played a leading role in the deployment of SMRs and other advanced reactors, and summarizes the discussions regarding the proposal for a licensing framework for SMRs in Japan, an analysis of the gaps between Japan's current licensing framework and the proposed framework, and specific recommendations for closing the gaps. The Committee is hopeful that the changes to the regulatory framework proposed in this report will become a reality.

JAEA Reports

Development of elemental technologies of hand-foot-cloth monitors for $$alpha$$-contamination visualization (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2024-006, 54 Pages, 2024/06

JAEA-Review-2024-006.pdf:2.21MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of elemental technologies of hand-foot-cloth monitors for $$alpha$$-contamination visualization" conducted in FY2022. The present study aims to develop hand-foot-monitors for $$alpha$$-contamination visualization and cloth monitors for $$alpha$$/$$beta$$-contamination visualization consisting of a portable phoswich detector for measuring $$alpha$$/$$beta$$-contamination distribution and energy to ensure the safety and security of workers involved in the decommissioning project of the 1F. The possibility of practical application of new scintillator materials and devices was examined with the goal of developing such new instruments.

Journal Articles

Numerical simulation of accidents involving core damage with integrative severe accident analysis code, SPECTRA

Ishida, Shinya; Uchibori, Akihiro; Okano, Yasushi

Dai-28-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2024/06

no abstracts in English

Journal Articles

Consideration of the dielectric response for radiation chemistry simulations

Toigawa, Tomohiro; Kai, Takeshi; Kumagai, Yuta; Yokoya, Akinari*

Journal of Chemical Physics, 160(21), p.214119_1 - 214119_9, 2024/06

The spur reaction is crucial for determining radiolysis or photolysis in liquid, but the spur expansion process has yet to be elucidated. One reason is the need to understand the role of the dielectric response of the solvating molecules surrounding the charged species generated by ionization. The dielectric response corresponds to the time evolution of the permittivity and might affect the chemical reaction-diffusion of the species in a spur expansion process. This study examined the competitive relationship between reaction-diffusion kinetics and the dielectric response by solving the Debye-Smoluchowski equation while considering the dielectric response. The Coulomb force between the charged species gradually decreases with the dielectric response. Our calculation results found a condition where fast recombination occurs before the dielectric response is complete. Although it has been reported that the primary G-values of free electrons depend on the static dielectric constant under low-linear-energy transfer radiation-induced ionization, we propose that considering the dielectric response can provide a deeper insight into fast recombination reactions under high-linear-energy transfer radiation- or photo-induced ionization. Our simulation method enables the understanding of fast radiation-induced phenomena in liquids.

Journal Articles

Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy

Li, L.*; Miyamoto, Goro*; Zhang, Y.*; Li, M.*; Morooka, Satoshi; Oikawa, Katsunari*; Tomota, Yo*; Furuhara, Tadashi*

Journal of Materials Science & Technology, 184, p.221 - 234, 2024/06

 Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)

Journal Articles

Interaction of solute manganese and nickel atoms with dislocation loops in iron-based alloys irradiated with 2.8 MeV Fe ions at 400 $$^{circ}$$C

Nguyen, B. V. C.*; Murakami, Kenta*; Chena, L.*; Phongsakorn, P. T.*; Chen, X.*; Hashimoto, Takashi; Hwang, T.*; Furusawa, Akinori; Suzuki, Tatsuya*

Nuclear Materials and Energy (Internet), 39, p.101639_1 - 101639_9, 2024/06

JAEA Reports

Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2023-048, 151 Pages, 2024/05

JAEA-Review-2023-048.pdf:8.48MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted in FY2022. The present study aims to develop an evaluation method necessary to obtain a perspective on the long term structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2022, the second year of the three-year plan, some tests and other activities on the following research items were conducted following FY2021, based on the specific research methods and research directions clarified in FY2021.

4411 (Records 1-20 displayed on this page)