Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 187

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Mechanical failure of high-burnup fuel rods with stress-relieved annealed and recrystallized M-MDA cladding under reactivity-initiated accident conditions

Mihara, Takeshi; Udagawa, Yutaka; Sugiyama, Tomoyuki; Amaya, Masaki

Journal of Nuclear Science and Technology, 58(8), p.872 - 885, 2021/08

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2018 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-074, 105 Pages, 2021/03

JAEA-Review-2020-074.pdf:3.72MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and TPL (Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2018. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2017 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-073, 113 Pages, 2021/03

JAEA-Review-2020-073.pdf:3.87MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory. This annual report describes the activities of our department in fiscal year of 2017. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

JAEA Reports

Annual report of Department of Research Reactor and Tandem Accelerator, JFY2016 (Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator, RI Production Facility and Tritium Process Laboratory)

Department of Research Reactor and Tandem Accelerator

JAEA-Review 2020-072, 102 Pages, 2021/03

JAEA-Review-2020-072.pdf:3.86MB

The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator, RI Production Facility and Tritium Process Laboratory). This annual report describes the activities of our department in fiscal year of 2016. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on.

Journal Articles

Development and release of fuel performance code FEMAXI-8

Udagawa, Yutaka

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(10), p.555 - 559, 2020/10

no abstracts in English

Journal Articles

Transient response of LWR fuels (RIA)

Udagawa, Yutaka; Fuketa, Toyoshi*

Comprehensive Nuclear Materials, 2nd Edition, Vol.2, p.322 - 338, 2020/08

Journal Articles

Evaluation of radiation effects on residents living around the NSRR under external hazards

Motome, Yuiko; Akiyama, Yoshiya; Murao, Hiroyuki

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021115_1 - 021115_11, 2020/04

The nuclear safety research reactor (NSRR) is a research reactor of training research isotopes general atomics -annular core pulse reactor type. The NSRR facility has been utilized for fuel irradiation experiments to study the behaviors of nuclear fuels under reactivity-initiated accident conditions. Under the new regulation standards, which was established after the Fukushima Daiichi accident, research reactors are regulated based on the risk of the facilities. To apply the graded approach, the radiation effects on residents living around the NSRR under the external hazards were evaluated, and the level of the risk of the NSRR facility was investigated. This paper summarizes the result of the evaluation in the case where the safety functions are lost due to a tornado, an earthquake followed by a tsunami. All in all, the risk is confirmed to be relatively low, since the effective dose on the residents is found to be below 5 mSv per event due to the loss of the safety functions.

Journal Articles

Behavior of LWR fuels with additives under reactivity-initiated accident conditions

Mihara, Takeshi; Udagawa, Yutaka; Amaya, Masaki; Taniguchi, Yoshinori; Kakiuchi, Kazuo

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.544 - 550, 2019/09

Journal Articles

Behavior of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Udagawa, Yutaka; Mihara, Takeshi; Amaya, Masaki; Kakiuchi, Kazuo

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.551 - 558, 2019/09

JAEA Reports

Annual report of Nuclear Science Research Institute, JFY2013 & 2014

Nuclear Science Research Institute

JAEA-Review 2018-036, 216 Pages, 2019/03

JAEA-Review-2018-036.pdf:19.22MB

Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office, Fukushima Project Team and six departments, namely Department of Operational Safety Administration, Department of Radiation Protection, Engineering Services Department, Department of Research Reactor and Tandem Accelerator, Department of Fukushima Technology Development and Department of Decommissioning and Waste Management, and each departments manage facilities and develop related technologies to achieve the "Middle-term Plan" successfully and effectively. In order to contribute the future research and development and to promote management business, this annual report summarizes information on the activities of NSRI of JFY 2013 and 2014 as well as the activity on research and development carried out by Nuclear Safety Research Center, Advanced Research Center, Nuclear Science and Engineering Center and Quantum Beam Science Center, and activity of Nuclear Human Resource Development Center, using facilities of NSRI.

Journal Articles

Behaviors of high-burnup LWR fuels with improved materials under design-basis accident conditions

Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Taniguchi, Yoshinori

Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2018) (Internet), 10 Pages, 2018/10

Journal Articles

Behavior of fuel with zirconium alloy cladding in reactivity-initiated accident and loss-of-coolant accident

Fuketa, Toyoshi*; Nagase, Fumihisa

Zirconium in the Nuclear Industry; 18th International Symposium (ASTM STP 1597), p.52 - 92, 2018/01

Extensive research programs have been performed for more than two decades in JAEA and a better understanding has been developed for fuel behavior under accident conditions. The program is comprised of: RIA studies including pulse-irradiation experiments in the NSRR, cladding mechanical tests, and development and verification of a computer code RANNS; LOCA tests including integral thermal shock tests, oxidation rate measurements, and cladding mechanical tests; development and verification of a computer code FEMAXI-6, etc. Data and findings from the research programs provided technical basis directly and indirectly for regulatory criteria in Japan and other countries. This paper reviews and summarizes the major outcome from the research programs and identifies further research needs, as the acceptance technical paper for the Kroll Medal award of ASTM.

Journal Articles

Behavior of high-burnup advanced LWR fuels under design-basis accident conditions

Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Taniguchi, Yoshinori

Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09

Journal Articles

Behavior of high-burnup advanced LWR fuels under accident conditions

Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Taniguchi, Yoshinori

Proceedings of Annual Topical Meeting on LWR Fuels with Enhanced Safety and Performance (TopFuel 2016) (USB Flash Drive), p.53 - 62, 2016/09

In order to evaluate adequacy of present safety criteria and safety margins in terms of advanced fuels and provide a database for future regulation on them, JAEA started an extensive research program called ALPS-II program, which has been sponsored by NRA, Japan. This program is primarily composed of tests simulating a RIA and a LOCA on the high-burnup advanced fuels irradiated in commercial PWR or BWR. Recently, the failure limits of the high-burnup advanced fuels under RIA conditions were investigated at NSRR, and post-test examinations on the fuel rods after the pulse irradiation tests are being performed. In terms of the simulated LOCA test, integral thermal shock tests and high temperature oxidation tests were carried out at RFEF, and the fracture limits, high temperature oxidation rate, etc. of the high-burnup advanced fuel cladding were investigated. This paper mainly describes some recent experimental results obtained in this program with respect to RIA and LOCA.

Journal Articles

Recent research activities using NSRR on safety related issues

Udagawa, Yutaka; Sugiyama, Tomoyuki*; Amaya, Masaki

Proceedings of 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) (CD-ROM), p.1183 - 1189, 2016/04

JAEA Reports

Assessment report of research and development on "Nuclear Safety Research" in FY2014 (Post- and pre-review report)

Kudo, Tamotsu; Onizawa, Kunio*; Nakamura, Takehiko

JAEA-Evaluation 2015-011, 209 Pages, 2015/11

JAEA-Evaluation-2015-011.pdf:10.36MB

Japan Atomic Energy Agency (JAEA) consulted an assessment committee, "Evaluation Committee of Research and Development (R&D) Activities for Nuclear Safety", for post- and pre-review assessment of R&D on nuclear safety research. In response to JAEA's request, the Committee assessed mainly the progress of the R&D project according to guidelines, which addressed the rationale behind the R&D project, the relevance of the project outcome and the efficiency of the project implementation during the period of the current and next plan. As a result, the Committee concluded that the progress of the R&D project is satisfactory. This report describes the results of evaluation by the Committee. In addition, the appendix of this report contains presentations used for the evaluation, and responses from JAEA on the comments from the member of the Committee.

Journal Articles

Behavior of high burnup advanced fuels for LWR during design-basis accidents

Amaya, Masaki; Udagawa, Yutaka; Narukawa, Takafumi; Mihara, Takeshi; Sugiyama, Tomoyuki

Proceedings of Annual Topical Meeting on Reactor Fuel Performance (TopFuel 2015), Part.2 (Internet), p.10 - 18, 2015/09

Advanced fuels which consist of cladding materials with high corrosion resistance and pellets with lower fission gas release have been developed by utilities and fuel vendors to improve fuel performance even in the high burnup region and also raise the safety level of current nuclear power plants to a higher one. In order to evaluate the adequacy of present safety criteria and safety margins in terms of such advanced fuels and provide a database for future regulation on them, Japan Atomic Energy Agency (JAEA) has started a new extensive research program called ALPS-II program (Phase II of Advanced LWR Fuel Performance and Safety program). This program is primarily composed of tests simulating a reactivity-initiated accident (RIA) and a loss-of-coolant accident (LOCA) on high burnup advanced fuels shipped from European nuclear power plants. This paper describes an outline of this program and some experimental results with respect to RIA and LOCA which have been obtained in this program.

JAEA Reports

Model development of light water reactor fuel analysis code RANNS for reactivity-initiated accident conditions

Udagawa, Yutaka; Suzuki, Motoe; Amaya, Masaki

JAEA-Data/Code 2014-025, 27 Pages, 2015/02

JAEA-Data-Code-2014-025.pdf:2.53MB

A light water reactor fuel analysis code RANNS has been developed to analyze thermal and mechanical behaviors of a single fuel rod in mainly reactivity-initiated accident (RIA) conditions. The recent model development for the RANNS code has been focused on improving predictability of stress, strain, and temperature inside a fuel rod during pellet cladding mechanical interaction (PCMI), which is one of the most important behaviors of high-burnup fuels under RIA conditions. This report provides descriptions of the models developed and/or validated recently via experimental analyses using the RANNS code on the RIA-simulating experiments conducted in the nuclear safety research reactor (NSRR): models for mechanical behaviors as relocation of fuel pellets, pellet yielding, pellet-cladding mechanical bonding, and PCMI failure limit of fuel cladding, and thermal behaviors as pellet-cladding gap conductance and heat transfer from fuel rod surface to coolant water.

Journal Articles

Experimental analysis with RANNS code on boiling heat transfer from fuel rod surface to coolant water under reactivity-initiated accident conditions

Udagawa, Yutaka; Sugiyama, Tomoyuki; Suzuki, Motoe; Amaya, Masaki

IAEA-TECDOC-CD-1775; Proceedings of Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents (CD-ROM), p.200 - 219, 2015/00

Journal Articles

Reevaluation of fuel enthalpy in NSRR test for high burnup fuels

Udagawa, Yutaka; Sugiyama, Tomoyuki; Amaya, Masaki

Proceedings of 2014 Water Reactor Fuel Performance Meeting/ Top Fuel / LWR Fuel Performance Meeting (WRFPM 2014) (USB Flash Drive), 8 Pages, 2014/10

187 (Records 1-20 displayed on this page)