検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年

Liquid-like thermal conduction in intercalated layered crystalline solids

Li, B.; Wang, H.*; 川北 至信  ; Zhang, Q.*; Feygenson, M.*; Yu, H. L.*; Wu, D.*; 尾原 幸治*; 菊地 龍弥*  ; 柴田 薫  ; 山田 武*; Ning, X. K.*; Chen, Y.*; He, J. Q.*; Vaknin, D.*; Wu, R. Q.*; 中島 健次  ; Kanatzidis, M. G.*

Li, B.; Wang, H.*; Kawakita, Yukinobu; Zhang, Q.*; Feygenson, M.*; Yu, H. L.*; Wu, D.*; Ohara, Koji*; Kikuchi, Tatsuya*; Shibata, Kaoru; Yamada, Takeshi*; Ning, X. K.*; Chen, Y.*; He, J. Q.*; Vaknin, D.*; Wu, R. Q.*; Nakajima, Kenji; Kanatzidis, M. G.*

As a generic property, all substances transfer heat through microscopic collisions of constituent particles. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe$$_{2}$$. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

Access

:

- Accesses

InCites™

:

パーセンタイル:96.93

分野:Chemistry, Physical

Altmetrics

:

[CLARIVATE ANALYTICS], [WEB OF SCIENCE], [HIGHLY CITED PAPER & CUP LOGO] and [HOT PAPER & FIRE LOGO] are trademarks of Clarivate Analytics, and/or its affiliated company or companies, and used herein by permission and/or license.