Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takabe, Yugo; Otsuka, Noriaki; Fuyushima, Takumi; Sayato, Natsuki; Inoue, Shuichi; Morita, Hisashi; Jaroszewicz, J.*; Migdal, M.*; Onuma, Yuichi; Tobita, Masahiro*; et al.
JAEA-Technology 2022-040, 45 Pages, 2023/03
Because of the decommission of the Japan Materials Testing Reactor (JMTR), the domestic neutron irradiation facility, which had played a central role in the development of innovative nuclear reactors and the development of technologies to further improve the safety, reliability, and efficiency of light water reactors, was lost. Therefore, it has become difficult to pass on the operation techniques of the irradiation test reactors and irradiation technologies, and to train human resources. In order to cope with these issues, we conducted a study on the implementation of irradiation tests using overseas reactors as neutron irradiation sites as an alternative method. Based on the "Arrangement between the National Centre for Nuclear Research and the Japan Atomic Energy Agency for Cooperation in Research and Development on Testing Reactor," the feasibility of conducting an irradiation test at the MARIA reactor (30 MW) owned by the National Centre for Nuclear Research (NCBJ) using the temperature control system, which is one of the JMTR irradiation technologies, was examined. As a result, it was found that the irradiation test was possible by modifying the ready-made capsule manufactured in accordance with the design and manufacturing standards of the JMTR. After the modification, a penetration test, an insulation continuity test, and an operation test in the range of room temperature to 300C, which is the operating temperature of the capsule, were conducted and favorable results were obtained. We have completed the preparations prior to transport to the MARIA reactor.
Daido, Hiroyuki*; Yamada, Tomonori; Saruta, Koichi; Miyabe, Masabumi; Ito, Chikara; Shibata, Takuya; Inoue, Kaoru*; Terabayashi, Ryohei*; Hasegawa, Shuichi*
Physica Scripta, 98(3), p.035112_1 - 035112_22, 2023/02
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Characterization of kW class quasi-continuous wave (a pulse duration of 10 ms) laser interaction with metal targets and those with metal oxide targets are presented in respect to the laser induced breakdown and the successive laser induced melting and evaporation coupled with a mechanical response followed by ejection of various kinds of particles and fragments. An experiment was performed using fiber lasers coupled with a high-speed camera to observe dynamics of the interaction. Ejected fine particles were collected using a cascade impactor and a home-made collector and were observed with electron microscopes. Shapes of irradiation marks were observed with a digital optical microscope. We also measured total ejected mass from a target. The experimental results reveal that firstly the laser threshold intensity of the interaction with the metal target was lower and more stable than those with the metal oxide targets. Secondly, in the stainless steel targets, the dynamics of molten layer created by thermal conduction from the laser heated thin layer and successive particle ejection with less mechanical response by the adjacent solid layer are dominant processes, while in the metal oxide targets, the fracturing in the relatively deeper interaction region coupled with brittle material response having relatively large laser shot to shot fluctuation appears to play a significant role in addition to the laser induced melting.
Ozeki, Hidemasa; Isono, Takaaki; Kawano, Katsumi; Saito, Toru; Kawasaki, Tsutomu; Nishino, Katsumi; Okuno, Kiyoshi; Kido, Shuichi*; Semba, Tomoyuki*; Suzuki, Yozo*; et al.
IEEE Transactions on Applied Superconductivity, 25(3), p.4200804_1 - 4200804_4, 2015/06
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Sumiya, Shuichi; Watanabe, Hitoshi; Miyagawa, Naoto; Nakano, Masanao; Nakada, Akira; Fujita, Hiroki; Takeyasu, Masanori; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; et al.
JAEA-Review 2013-056, 181 Pages, 2014/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2012 to March 2013. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.
Sumiya, Shuichi; Watanabe, Hitoshi; Miyagawa, Naoto; Nakano, Masanao; Fujita, Hiroki; Kono, Takahiko; Inoue, Kazumi; Yoshii, Hideki; Otani, Kazunori*; Hiyama, Yoshinori*; et al.
JAEA-Review 2013-041, 115 Pages, 2014/01
Based on the regulations (the safety regulation of Tokai reprocessing plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, and the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and bylaw of Ibaraki prefecture), this report describes the effluent control results of liquid waste discharged from the JAEA's Nuclear Fuel Cycle Engineering Laboratories in the fiscal year 2012, from 1st April 2012 to 31st March 2013. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other facilities were much lower than the authorized limits of the above regulations.
Nagata, Hiroshi; Inoue, Shuichi; Yamaura, Takayuki; Tsuchiya, Kunihiko; Nagao, Yoshiharu
JAEA-Technology 2013-008, 30 Pages, 2013/06
Refurbishment of JMTR was completed in FY2010. For damage caused by the 2011 off the Pacific coast of Tohoku Earthquake, the repair of facilities was completed in October 2012. Currently, the JMTR is in preparation for restart. Irradiation tests for LWRs safety research, science and technologies, etc. are expected after the JMTR restart. On the other hand, aiming at the attractive irradiation testing reactor, the usability improvement has been discussed. As a part of the usability improvement, shortening of turnaround time was discussed focusing on the fabrication process of irradiation capsules, where the fabrication process was analyzed and reviewed by referring a trial fabrication of the mockup capsule. As a result, it was found that the turnaround time can be shortened 2 months from fabrication period of 6 months with communize of irradiation capsule parts, application of ready-made instrumentation including the sheath heater, reconsideration of inspection process, etc.
Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Nagaoka, Mika; et al.
JAEA-Review 2013-009, 195 Pages, 2013/06
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2011 to March 2012. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in March 2011.
Inoue, Shuichi; Omuro, Tadao; Nabeya, Hideaki; Matsui, Yoshinori; Iida, Kazuhiro; Ito, Kazuyuki; Kimura, Akihiro; Kanno, Masaru
JAEA-Technology 2010-010, 27 Pages, 2012/05
In fuel irradiation transient tests using a boiling water capsule, a dilution tube has been installed in the boiling water capsule in order to detect fission products (FP) from an irradiated fuel, in case of the fuel failure during the transient, by a radiation monitor located outside the reactor. When the fuel failure occurs, the released FP flows out from the capsule through the dilution tube. The dilution tube is designed to minimize the released FP that can be detected by the radiation monitor located outside the reactor. This report summarized the measurement results of the dilution tube installed in the boiling water capsule.
Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Kokubun, Yuji; et al.
JAEA-Review 2012-015, 166 Pages, 2012/05
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2010 to March 2011. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in 2011 March. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data exceeded the normal range of fluctuation by the accidental release was evaluated in the appendices.
Onuma, Yuichi; Inoue, Shuichi; Okada, Yuji; Sakuta, Yoshiyuki; Kanno, Masaru
JAEA-Technology 2011-016, 13 Pages, 2011/06
The Japan Material Testing Reactor (JMTR) in the Oarai Research and Development Center has been continued to improvement of the temperature control capability for irradiation specimens is being carried out for applying the JMTR. The JMTR had developed and been utilized the High accuracy capsule temperature control system had developed by adopting a feed forward control using measured reactor output power, and have been utilized in the JMTR. Based on the development knowledge, the advanced capsule temperature control system is now under development taking into consideration of additional function and so on so as to obtain high quality irradiation test data in the world in order to contribute the nuclear technology development.
Sumiya, Shuichi; Matsuura, Kenichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Kokubun, Yuji; et al.
JAEA-Review 2011-004, 161 Pages, 2011/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2009 to March 2010. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes.
Kitagishi, Shigeru; Tanimoto, Masataka; Iimura, Koichi; Inoue, Shuichi; Saito, Takashi; Omi, Masao; Tsuchiya, Kunihiko
JAEA-Review 2010-046, 19 Pages, 2010/11
The Japan Materials Testing Reactor (JMTR) has been utilized for the various neutron irradiation tests of fuels and materials, as well as for radioisotope production since achieving the first criticality in March 1968. The operation of JMTR was halted for the refurbishment in August 2006. The new JMTR is expected to contribute to many fields: the lifetime extension of LWRs and the expansion of industry use. To meet a wide range of users' needs, the development of new irradiation technologies has been carried out for the new JMTR. This report summarizes the present conditions of the development of FP gas pressure gauges, multi-paired thermocouples, ECP and ceramics sensors.
Inoue, Shuichi; Yamaura, Takayuki; Saito, Takashi; Ishikawa, Kazuyoshi; Kikuchi, Taiji; Sozawa, Shizuo; Tsuchiya, Kunihiko
JAEA-Technology 2009-076, 33 Pages, 2010/03
In Japan Material Testing Reactor (JMTR), a lot of experiments of fuel irradiation with the power ramping tests have been performed by using the shroud irradiation facility and the Boiling Water Capsule (BOCA). The fuel samples used in these tests were welded to re-instrumentation devices such as thermocouples and FP gas pressures. In this development, the mechanical connection method as "mechanical seal structure", that enables the re-use of re-instrumentation devices, was adopted in order to improve the utilization efficiency of the device. The test samples with mechanical seal structure were fabricated and the confirmatory tests such as He leakage test, thermal cycle test, autoclave test, etc. were carried out. The test samples with the mechanical seal structure showed an excellent result in various confirmatory tests, and the prospect are bright for the re-use of re-instrumentation devices with the mechanical seal structure.
Inoue, Shuichi; Yamaura, Takayuki; Saito, Takashi; Kanno, Masaru
UTNL-R-0475, p.2_4_1 - 2_4_10, 2010/03
no abstracts in English
Kitagishi, Shigeru; Inoue, Shuichi; Saito, Takashi; Omi, Masao; Tsuchiya, Kunihiko
UTNL-R-0475, p.2_5_1 - 2_5_9, 2010/03
no abstracts in English
Kitagishi, Shigeru; Inoue, Shuichi; Saito, Takashi; Omi, Masao; Tsuchiya, Kunihiko
JAEA-Testing 2009-010, 14 Pages, 2010/02
It is important for neutron irradiation tests of materials and fuels to clarify the irradiation environment. Especially, the oxygen and hydrogen peroxide concentrations are required to measure for the analysis of corrosion mechanism of the structure materials in the light-Water Reactor (LWR) conditions. In this report, the trial fabrication tests of the ceramic gas sensor were carried out by the Spark Plasma Sintering (SPS) method and basic performance results of the sensor were described.
Takeishi, Minoru; Sumiya, Shuichi; Matsuura, Kenichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Isozaki, Hisaaki*; Isozaki, Tokuju; Morisawa, Masato; Fujita, Hiroki; et al.
JAEA-Review 2009-048, 177 Pages, 2009/12
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV; Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2008 to March 2009. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes.
Izumo, Hironobu; Chimi, Yasuhiro; Ishida, Takuya; Kawamata, Kazuo; Inoue, Shuichi; Ide, Hiroshi; Saito, Takashi; Ise, Hideo; Miwa, Yukio; Ugachi, Hirokazu; et al.
JAEA-Technology 2009-011, 31 Pages, 2009/04
Regarding Irradiation Assisted Stress Corrosion Cracking (IASCC) for austenitic stainless steel of the light water reactor (LWR), a lot of data that concerns the post irradiation evaluation (PIE) is acquired. However, IASCC occurs in LWR condition. Therefore, it is necessary to confirm adequacy of the PIE data comparing the experiment data under the simulated LWR condition. Bigger specimen is needed to acquire the effective data for the destruction dynamics in the study of stress corrosion cracking under neutron irradiation condition. Therefore, development of a new crack growth unit which can load to bigger is necessary to the neutron irradiation test. As a result, a prospect was provided in the unit that could load to specimen by changing load mechanism to the lever type from the linear type. And also, in the development of crack propagation unit, some technical issues were extracted from the discussion of the unit structure adopting the LVDT (Linear Variable Differential Transformer).
Inaba, Yoshitomo; Inoue, Shuichi; Izumo, Hironobu; Kitagishi, Shigeru; Tsuchiya, Kunihiko; Saito, Takashi; Ishitsuka, Etsuo
JAEA-Conf 2008-010, p.30 - 41, 2008/12
Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Center was organized to development the new irradiation technology for the application at JMTR re-operation. The new irradiation engineering building was remodeled from the old building for RI development, and will be used from the end of September, 2008. Advanced in-situ instrumentation technology (high temperature multi-paired thermocouple, ceramic sensor, application of light measurement), Mo production technology by the new Mo solution irradiation method, recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training program through the development to young generation in not only Japan but also Asian counties. In this seminar, as the status of the new irradiation technology development, new irradiation engineering building, high temperature multi-paired thermocouple, experiences of light measurement, recycling technology on used beryllium reflector will be introduced.
Takemoto, Noriyuki; Izumo, Hironobu; Inoue, Shuichi; Abe, Shinichi; Naka, Michihiro; Akashi, Kazutomo; Omi, Masao; Miyazawa, Masataka; Baba, Osamu*; Nagao, Yoshiharu
JAEA-Review 2008-051, 36 Pages, 2008/10
The JMTR has been refurbished to restart operation in FY2011. The restarted JMTR plays roles of (1) measures for long-term operation of light water reactors, (2) improvement in scientific technique, (3) increase of industrial use, (4) training of human resources, etc. It is needed to operate the restarted JMTR safety and stably and maintain high available factor (5070%) because of increasing of irradiation utilization demand. In this report, measures for training of reactor operators, organization for operating, etc were proposed to operate reactor safety and smoothly. And also reactor operation procedure was examined to improve available factor up to world level for materials testing reactor. As a result, it was turned out to be possible to realize stably 210 days operation per year (available factor: 60%).