Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 22382

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

User's manual for the OSCAAR code package

Radiation Risk Analysis Research Group, Risk Analysis and Applications Research Division

JAEA-Testing 2020-001, 65 Pages, 2020/03

JAEA-Testing-2020-001.pdf:4.42MB

The Nuclear Safety Research Center (NSRC) has developed a Level 3 Probabilistic Risk Assessment (PRA) code, the OSCAAR (Off-Site Consequence Analysis code for Atmospheric Release in Reactor Accident). Using a source-term derived from a severe accident analysis code, OSCAAR calculates the downwind transport, airborne dispersion, and ground deposition of radioactive materials as well as the radiation dose and then can evaluate the effect of early and late protective actions and health effect. The NSRC also developed the OSCAAR Code Package that has a Windows-based interface and framework for performing consequence analysis in order to create or modify input files, execute the OSCAAR and postprocess the output files efficiently and conveniently. The report is a user's manual for the OSCAAR Code Package.

JAEA Reports

Post-processor coding for large-scale transient simulation computer codes

Yoshikawa, Shinji

JAEA-Technology 2019-024, 22 Pages, 2020/03

JAEA-Technology-2019-024.pdf:1.76MB
JAEA-Technology-2019-024-appendix(CD-ROM).zip:73.55MB

In various technical fields of nuclear energy, computer codes are often used for transient simulations of target phenomena. Some of the codes were developed many years ago and have been revised with newly acquired findings, rather than newly developed, because of many encompassed numerical models and complexity of algorithms. In many cases, available outputs for users are output text files and graphs showing temporal variations of parameters, despite diversified and huge number of output information items are posing difficulty to the users in grasping the whole picture of the reproduced phenomena. This report compiles a series of know-hows in building a post-processor software for large simulation codes which serves as an interactive tool for code users in understanding the reproduced consequence with visually understandable information items. These know-hows are acquired through post-processor developments for LWR severe accident simulation codes RELAP/SCDAPSIM and MELCOR.

JAEA Reports

Final report on feasibility study of Pu monitoring and solution measurement of high active liquid waste containing fission product at Reprocessing Facility

Sekine, Megumi; Matsuki, Takuya; Suzuki, Satoshi*; Tsutagi, Koichi; Nishida, Naoki; Kitao, Takahiko; Tomikawa, Hirofumi; Nakamura, Hironobu; LaFleur, A.*; Browne, M.*

JAEA-Technology 2019-023, 160 Pages, 2020/03

JAEA-Technology-2019-023.pdf:9.43MB

The International Atomic Energy Agency (IAEA) has proposed in its Research and Development plan (STR-385), the development of technology to enable real-time flow measurement of nuclear material as a part of an advanced approach to effective and efficient safeguards for reprocessing facilities. To address this, Japan Atomic Energy Agency (JAEA) has been tackling development of a new detector to enable monitoring of Pu in solutions with numerous FPs as a joint research program with U.S. DOE to cover whole reprocessing process. In this study, High Active Liquid Waste (HALW) Storage Facility in Tokai Reprocessing Plant was used as the test field. At first, the design information of HALW storage tank and radiation (type and intensity) were investigated to develop a Monte Carlo N-Particle Transport Code (MCNP) model. And then, dose rate distribution outside/ inside of the concrete cell where the HALW tank is located was measured to design new detectors and check MCNP model applicability. Using the newly designed detectors, gamma rays and neutron were continuously measured at the outside/ inside of the concrete cell to assess the radiation characteristics and to optimize detector position. Finally, the applicability for Pu monitoring technology was evaluated based on the simulation results and gamma-ray/neutron measurement results. We have found that there is possibility to monitor the change of Pu amount in solution by combination both of gamma-ray and neutron measurement. The results of this study suggested the applicability and capability of the Pu motoring to enhance safeguards for entire reprocessing facility which handles Pu with FP as a feasibility study. This is final report of this project.

JAEA Reports

Development of new corona probe

Nakamura, Masahiko; Kutsukake, Kenichi; Matsuda, Makoto

JAEA-Technology 2019-022, 20 Pages, 2020/03

JAEA-Technology-2019-022.pdf:1.73MB

The JAEA Tokai tandem accelerator (an electrostatic accelerator) has the advantage that it can accelerate an ion beam with proportional energy to its acceleration voltage. Therefore the control of an ion beam energy can be automated when the control of the acceleration voltage can be automated by using the scaling operation system: an electromagnetics proportion of optical device parameters, and the ganged control system: a synchronized controlling related devices in the JAEA Tokai Tandem accelerator control system. We should improve several devices to achieve the automatic control of the accelerator voltage. Especially, the positioning system of the corona probe which adjusts the acceleration voltage had to be automated. However the original corona probe was difficult to be applied to the automation by its poor control system and low positioning precision. We have developed the new corona probe which improved defects of the original one. The new corona probe has an automatic and high precision positioning system and enhanced maintainability by new control system, new driven system and new position detection system. We describe about the development of the new corona probe in detail.

JAEA Reports

Study of groundwater sampling casing for monitoring device

Okihara, Mistunobu*; Yahagi, Ryoji*; Iwatsuki, Teruki; Takeuchi, Ryuji; Murakami, Hiroaki

JAEA-Technology 2019-021, 77 Pages, 2020/03

JAEA-Technology-2019-021.pdf:5.33MB

One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on monitoring techniques of the geological environment. In this report, the conceptual design of the monitoring system for groundwater pressure and water chemistry was carried out. The currently installed and used system in research galleries at various depths was re-designed to make it possible to collect groundwater and observe the water pressure on the ground.

JAEA Reports

Prototype fast breeder reactor Monju; Its history and achievements (Translated document)

Mitsumoto, Rika; Hazama, Taira; Takahashi, Keita; Kondo, Satoru

JAEA-Technology 2019-020, 167 Pages, 2020/03

JAEA-Technology-2019-020.pdf:21.06MB
JAEA-Technology-2019-020-high-resolution1.pdf:47.3MB
JAEA-Technology-2019-020-high-resolution2.pdf:34.99MB
JAEA-Technology-2019-020-high-resolution3.pdf:48.74MB
JAEA-Technology-2019-020-high-resolution4.pdf:47.83MB
JAEA-Technology-2019-020-high-resolution5.pdf:18.35MB
JAEA-Technology-2019-020-high-resolution6.pdf:49.4MB
JAEA-Technology-2019-020-high-resolution7.pdf:39.78MB

The prototype fast breeder reactor Monju has produced valuable technological achievements through design, construction, operation and maintenance over half a century since 1968. This report compiles the reactor technologies developed for Monju, including the areas: history and major achievements, design and construction, commissioning, safety, reactor physics, fuel, systems and components, sodium technology, materials and structures, operation and maintenance, and accidents and failures.

JAEA Reports

Investigations on distribution of radioactive substances owing to the FDNPP accident in the fiscal year 2018 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2019-019, 135 Pages, 2020/03

JAEA-Technology-2019-019.pdf:22.01MB

After the accident at TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS), distribution situation survey on radioactive materials have been conducted with financially supported by the Ministry of Education, Culture, Sports, Science and Technology (later the Nuclear Regulatory Agency) from June 2011 to FY2018. Results obtained in the project in FY2018 are presented in this report. Car-borne surveys, a flat ground measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data. Air dose rate distribution maps were created and temporal changes of air dose rate were analyzed. Regarding radiocesium deposition in the soil, depth profile survey in the soil and in-situ measurement were performed. Based on these measurement results, effective half-life of the air dose rate and the deposition were evaluated. Considering radiation monitoring data obtained in previous surveys and the installation positions of existing monitoring posts, we tried to make the "score" of the importance of measurement points. Using the Bayesian hierarchical modeling approach, we obtained a map that integrated the air dose rate distribution data obtained from aircraft monitoring, car-borne surveys, and walk surveys for the entire region within 80 km from the FDNPS. The measurement results for FY2018 were published on the "Expansion Site of Distribution Map of Radiation Dose", and measurement data were stored as CSV format. Radiation monitoring and environmental sample analysis owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Influence factors on temperature behavior of robot test pool

Arakawa, Ryoki; Nosaki, Nobuhisa

JAEA-Technology 2019-018, 157 Pages, 2020/03

JAEA-Technology-2019-018.pdf:12.97MB

The Naraha Center for Remote Control Technology Development has various test facilities for the decommissioning work after the accident of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, and is now promoting external use. In the test facilities, the robot test pool for the underwater robot can be used in different temperature conditions from room temperature to 60$$^{circ}$$C, maximum setting temperature. In order to clarify the temperature behavior in heating condition, a heating test from room temperature to 60$$^{circ}$$C was performed. The data was obtained this way. From the data, a heat transfer model for evaluating the temperature behavior was investigated, and the temperature evaluation method for the robot test pool was developed. By using the developed evaluation method, the influence of various factors such as flow rate and humidity on the temperature behavior was investigated for the condition of temperature heating, holding (test condition) and cooling. From the investigation, the temperature behavior of the robot test pool was analytically clarified, and a reasonable operation method was proposed. This report summarizes the results of analytical study at the temperature heating, holding and cooling condition.

JAEA Reports

Compilation of previous studies on secondary effects induced by earthquake and fault activity (Contract research)

Goto, Akira; Murakami, Masaki*; Sakai, Ryutaro*; Terusawa, Shuji*; Sueoka, Shigeru

JAEA-Review 2020-003, 60 Pages, 2020/03

JAEA-Review-2020-003.pdf:4.43MB

One of the natural phenomena that may affect the geological disposal system are earthquake and fault activity. Fault displacement due to the earthquake and fault activity will be considered the direct effects. In addition to it, it is necessary to consider the secondary effects include secondary faults formed by the seismic fault activity as well as spring water and mud volcanoes that are generated by fluid movement attributed to the fault activity. This paper introduces previous studies performed focused on the hydraulic effects (spring water and mud volcanoes) and mechanical effects (secondary faults) in order to understand the effects of these secondary phenomena on the geological disposal system. We were able to collect 142 literatures from Japan and overseas by searching for related keywords in Japanese and English. As a result, we compiled case studies of each secondary impact. From the viewpoint of geological disposal, we extracted the following issues for future research and development. As for the sump water induced by earthquakes and faulting, accumulation of information related to its mechanism, affected area, and activity history is required. As for the mud volcanoes, reviewing of the mechanism of anomalous pore water pressure that causing the formation, also development of estimation technique are required. And for the secondary faults, accumulation of the detailed spatial distribution and reviewing of formation mechanism are required.

JAEA Reports

Mizunami Underground Research Laboratory Project Annual Report for Fiscal Year 2018

Takeuchi, Ryuji; Iwatsuki, Teruki; Matsui, Hiroya; Nohara, Tsuyoshi; Onoe, Hironori; Ikeda, Koki; Mikake, Shinichiro; Hama, Katsuhiro; Iyatomi, Yosuke; Sasao, Eiji

JAEA-Review 2020-001, 66 Pages, 2020/03

JAEA-Review-2020-001.pdf:7.6MB

The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan. On the occasion of JAEA reformation in 2014, JAEA identified three remaining important issues on the geoscientific research program based on the synthesized latest results of research and development (R&D): "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technologies". The R&D on three remaining important issues have been carrying out in the MIU Project. In this report, the current status of R&D and construction activities of the MIU Project in fiscal year 2018 is summarized.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2018)

Department of HTTR

JAEA-Review 2019-049, 97 Pages, 2020/03

JAEA-Review-2019-049.pdf:4.66MB

The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor being able to get 950$$^{circ}$$C temperature of the outlet coolant with 30MW of thermal power, constructed at the Oarai Research and Development Institute of the Japan Atomic Energy Agency is the first High- Temperature Gas-cooled Reactor (HTGR) in Japan. The purpose of the HTTR is to establish and upgrade basic technologies for HTGRs. The HTTR has accumulated a lot of experience of HTGRs' operation and maintenance up to the present time throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2018, we made effort to pass the inspection of application document for the HTTR licensing to prove conformity with the new regulatory requirements for research reactors that took effect since December 2013 in order to restart operations of the HTTR that stopped since the 2011 off the Pacific coast of Tohoku Earthquake. This report summarizes the activities carried out in the 2018 fiscal year, which were the situation of the new regulatory requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY 2018

Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Nishimura, Shusaku; Matsubara, Natsumi; Maehara, Yushi; Narita, Ryosuke; et al.

JAEA-Review 2019-048, 165 Pages, 2020/03

JAEA-Review-2019-048.pdf:2.69MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2018 to March 2019. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Annual report for FY2018 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2018 - March 31, 2019)

Hanari, Toshihide; Furukawahara, Ryo; Tsuchida, Yoshihiro; Kawabata, Kuniaki; Chiba, Yusuke

JAEA-Review 2019-047, 32 Pages, 2020/03

JAEA-Review-2019-047.pdf:2.45MB

Naraha Center for Remote Control Technology Development (Naraha Center) was established in Japan Atomic Energy Agency to promote a decommissioning work of Fukushima Daiichi Nuclear Power Station (Fukushima Daiichi NPS). Naraha Center consists of a Full-scale Mock-up Test Building and Research Management Building, and various test facilities are installed in them for the decommissioning work of Fukushima Daiichi NPS. The number of facility use in Naraha Center was 64 in FY2018. This report summarizes the activities of Naraha Center in FY2018, such as the utilization of facilities and equipment of Naraha Center, the development of remote control technologies for supporting the decommissioning work, maintenance of the remote control machines for emergency response, and training for operators by using the machines.

JAEA Reports

Survey of computational methods of cross sections for thermal neutron scattering by liquids

Ichihara, Akira

JAEA-Review 2019-046, 36 Pages, 2020/03

JAEA-Review-2019-046.pdf:1.55MB

Toward the revision of JENDL-4.0, we conducted a literature survey on how to compute the cross section of thermal neutrons scattered by a liquid. This report summarizes the computational methods for evaluating thermal neutron cross sections with molecular dynamics simulations. The cross section can be expressed with a function called as scattering law. For light and heavy water, the scattering law data instead of the cross sections have been provided in nuclear databases. In this report we review the formulations of the scattering laws. The scattering laws can be derived from both the intermediate scattering function and the space-time correlation function. Features of the derived scattering laws are briefly explained. It is shown that the scattering law data can be evaluated using a molecular dynamics simulation of the liquid that is the target of thermal neutrons.

JAEA Reports

Annual report on the effluent control of low level liquid waste in Nuclear Fuel Cycle Engineering Laboratories FY2018

Nakano, Masanao; Fujii, Tomoko; Nagaoka, Mika; Inoue, Kazumi; Koike, Yuko; Yamada, Ryohei; Yoshii, Hideki*; Otani, Kazunori*; Hiyama, Yoshinori*; Kikuchi, Masaaki*; et al.

JAEA-Review 2019-045, 120 Pages, 2020/03

JAEA-Review-2019-045.pdf:2.54MB

Based on the regulations (the safety regulation of Tokai Reprocessing Plant, the safety regulation of nuclear fuel material usage facilities, the radiation safety rule, the regulation about prevention from radiation hazards due to radioisotopes, which are related with the nuclear regulatory acts, the local agreement concerning with safety and environment conservation around nuclear facilities, the water pollution control law, and by law of Ibaraki Prefecture), the effluent control of liquid waste discharged from the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency has been performed. This report describes the effluent control results of the liquid waste in the fiscal year 2018. In this period, the concentrations and the quantities of the radioactivity in liquid waste discharged from the reprocessing plant, the plutonium fuel fabrication facilities, and the other nuclear fuel material usage facilities were much lower than the limits authorized by the above regulations.

JAEA Reports

Annual report of Engineering Services Department on JFY2018

Engineering Services Department

JAEA-Review 2019-044, 96 Pages, 2020/03

JAEA-Review-2019-044.pdf:6.11MB

The Engineering Services Department is in charge of operation and maintenance of utility facilities (water distribution systems, electricity supply systems, steam generation systems and drain water systems etc.) in whole of the institute. And also is in charge of operation and maintenance of specific systems (power receiving and transforming facilities, an emergency electric power supply system, an air/liquid waste treatment system, a compressed air supply system) in nuclear reactor facilities, nuclear fuel treatment facilities and usual facilities or buildings. In addition, the department is in charge of maintenance of buildings, design and repair of electrical/mechanical equipments. This annual report describes summary of activities, operation and maintenance data and technical developments of the department carried out in JFY 2018. We hope that this report may help to future work.

JAEA Reports

Development of thin SiC neutron detector with high radiation resistance (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2019-042, 43 Pages, 2020/03

JAEA-Review-2019-042.pdf:25.64MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Thin SiC Neutron Detector with High Radiation Resistance". In the works for debris retrieval, it is required to install subcritical surveillance radiation monitors that can surely work for long time under extremely high gamma-ray radiation environment. However, there have been problems such as remote control of conventional radiation monitors is difficult because heavy radiation shields are needed. In the present study, we will develop a neutron detector using thin, light-weight and radiation-resistive silicon carbide (SiC) that has low sensitivity to gamma-rays as well as the data collection system in collaboration with the U.K. Using this system, the performance tests will be conducted supposing the real debris retrieval including the irradiation tests. Based on the results, we will conduct research and development aiming to make the system ready for use in real decommissioning works.

JAEA Reports

Contribution to risk reduction in decommissioning works by the elucidation of basic property of radioactive microparticles (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Ibaraki University*

JAEA-Review 2019-041, 71 Pages, 2020/03

JAEA-Review-2019-041.pdf:3.38MB

JAEA/CLADS, has been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") since FY2018. The Project aims at solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence has been collected from all over the world, and basic research and human resource development have been promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Contribution to Risk Reduction in Decommissioning Works by the Elucidation of Basic Property of Radioactive Microparticles". In order to establish the decommissioning procedures (recovery of the melted fuels, decontamination inside the reactors, ensuring the safety of the workers, etc.) of the Fukushima Daiichi Nuclear Power Station, radioactive microparticles released by the accident are an important information source for clarifying what had happened inside the reactors in the course of the accident. The purpose of the present study is to obtain detailed knowledge on the basic properties (particle size, composition, electrical/optical properties, etc.) of the radioactive microparticles, as well as to further elucidate the various properties of the radioactive microparticles including the quantitative evaluation of alpha-ray-emitters, through the Japan-UK synergetic research. Thus, we are conducting research and development that will contribute to the comprehensive works towards the risk reduction in the "decommissioning" plan.

JAEA Reports

Research and development of radiation-resistant sensor for fuel debris by integrating advanced measurement technologies (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2019-040, 77 Pages, 2020/03

JAEA-Review-2019-040.pdf:4.61MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Radiation-resistant Sensor for Fuel Debris by Integrating Advanced Measurement Technologies". The present study aims to in-situ measure and analyze the distribution status and criticality of flooded fuel debris. For this purpose, we construct a neutron measurement system by developing compact diamond neutron sensor (200 $$mu$$m $$times$$ 510 $$mu$$m thickness) and integrated circuit whose radiation resistance was improved by circuit design. Along with the multi-phased array sonar and the acoustic sub-bottom profiling (SBP) system, the neutron measurement system will be installed in the ROV (developed by Japan-UK collaboration) and its demonstration tests will be conducted in a PCV mock-up water tank.

JAEA Reports

Research and development of transparent materials for radiation shield using nanoparticles (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Kyushu University*

JAEA-Review 2019-039, 104 Pages, 2020/03

JAEA-Review-2019-039.pdf:5.57MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Transparent Materials for Radiation Shield using Nanoparticles". The present study aims to reduce radiation exposure of workers in debris retrieval/analysis and reduce deterioration of optical and electronic systems in remote cameras. For these purposes, we develop transparent radiation shield by making the shield materials into nanoparticles, and dispersing/solidifying them in epoxy resin. By making B$$_{4}$$C and W into nanoparticles, we will also develop a radiation shield that shields both neutrons and gamma-rays, and also suppresses secondary gamma-rays produced from neutrons.

22382 (Records 1-20 displayed on this page)