Grain refinement in titanium prevents low temperature oxygen embrittlement
チタンの結晶粒微細化による低温酸素脆化の抑制
Chong, Y.*; Gholizadeh, R.*; 都留 智仁 ; Zhang, R.*; 井上 耕治*; Gao, W.*; Godfrey, A.*; 光原 昌寿*; Morris, J. W. Jr.*; Minor, A. M.*; 辻 伸泰*
Chong, Y.*; Gholizadeh, R.*; Tsuru, Tomohito; Zhang, R.*; Inoue, Koji*; Gao, W.*; Godfrey, A.*; Mitsuhara, Masatoshi*; Morris, J. W. Jr.*; Minor, A. M.*; Tsuji, Nobuhiro*
チタンは格子間酸素によって脆化する。特に極低温では顕著な脆化挙動を示すため、チタンやその合金の製造において酸素含有量を厳しく管理する必要がある。この問題を解決するために、我々は結晶粒の微細化という構造戦略を提案した。77Kで非常に脆い粗粒の組織と比較して、Ti-0.3wt.%Oの超微細粒(UFG)組織(粒径2.0m)は、UFG組織特有の超高降伏強度を維持したまま均一延びを1桁上昇させることに成功した。UFG Ti-0.3wt.%Oにおけるこの特異な強度-延性相乗効果は、粒界凝集エネルギー向上に寄与する希薄な酸素の粒界偏析と優れたひずみ硬化能に寄与する転位の活性化の複合効果によって達成された。この方法は、低温での高強度Ti-O合金の応用の可能性を高めるだけでなく、格子間固溶硬化による延性の低下を生じる他の合金系にも適用できる可能性がある。
Interstitial oxygen embrittles titanium, particularly at cryogenic temperatures, which necessitates a stringent control of oxygen content in fabricating titanium and its alloys. Here, we propose a structural strategy, via grain refinement, to alleviate this problem. Compared to a coarse-grained counterpart that is extremely brittle at 77K, the uniform elongation of an ultrafine-grained (UFG) microstructure (grain size 2.0 m) in Ti-0.3wt.%O was successfully increased by an order of magnitude, maintaining an ultrahigh yield strength inherent to the UFG microstructure. This unique strength-ductility synergy in UFG Ti-0.3wt.%O was achieved via the combined effects of diluted grain boundary segregation of oxygen that helps to improve the grain boundary cohesive energy and enhanced dislocation activities that contribute to the excellent strain hardening ability. The present strategy could not only boost the potential applications of high strength Ti-O alloys at low temperatures, but could also be applied to other alloy systems, where interstitial solution hardening results into an undesirable loss of ductility.