Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
熊谷 知久*; 三浦 靖史*; 三浦 直樹*; Marie, S.*; Almahdi, R.*; 真野 晃宏; Li, Y.; 勝山 仁哉; 和田 義孝*; Hwang, J.-H.*; et al.
Journal of Pressure Vessel Technology, 144(1), p.011509_1 - 011509_18, 2022/02
被引用回数:1 パーセンタイル:37.1(Engineering, Mechanical)延性材料の破壊挙動を予測するため、いくつかの延性破壊シミュレーション手法が提案されている。ただし、これらの手法には実機器への適用性に関する懸念がある。本研究では、パラメータの決定を含めたシミュレーション手法の予測能力を確認するため、実機器を想定した破壊試験に関する2つの問題を設定し、ベンチマーク解析を実施した。1つ目の問題は、周方向の表面亀裂及び貫通亀裂を有する配管に対する単調曲げ荷重負荷試験、2つ目の問題は、周方向貫通亀裂を有する配管に対する繰り返し曲げ荷重負荷試験である。ベンチマークの参加機関は、独自に選択した手法によって延性亀裂進展挙動を予測した。用いられた手法は、ボイド率基準を有するGurson-Tvergaard-Needleman(GTN)モデルに基づく有限要素法(FEM)、応力三軸度により修正される破壊ひずみ基準また破壊エネルギー基準に基づくFEM、JまたはJ基準に基づく拡張FEM及び弾塑性粒子法等である。単調曲げ荷重負荷試験に関しては、すべての手法によるシミュレーションの結果が配管の変形と亀裂進展の挙動を精度よく再現し、シミュレーション手法の実機器への適用性が確認された。一方、繰り返し曲げ荷重負荷試験におけるこれらの挙動については、ほとんどの手法で再現できなかった。今後材料の繰り返し硬化特性等を考慮したパラメータの決定手法についてさらなる検討が必要であることを確認した。
兵頭 俊夫*; 和田 健*; 望月 出海*; 木村 正雄*; 峠 暢一*; 設楽 哲夫*; 深谷 有喜; 前川 雅樹*; 河裾 厚男*; 飯田 進平*; et al.
Journal of Physics; Conference Series, 791(1), p.012003_1 - 012003_8, 2017/02
被引用回数:3 パーセンタイル:76.05本論文では、高エネルギー加速器研究機構(KEK)物質構造科学研究所(IMSS)低速陽電子実験施設(SPF)で得られた最近の成果を報告する。全反射高速陽電子回折(TRHEPD)実験では、ルチル型TiO(110)(
)表面、Cu(111)およびCo(0001)基板上のグラフェン、Al(111)基板上のゲルマネンの構造を明らかにした。ポジトロニウム負イオン(Ps
)ステーションでは、Ps
の共鳴状態の観測に成功した。ポジトロニウム飛行時間測定(Ps-TOF)ステーションでは、ポジトロニウムの生成効率の増大とポジトロニウム生成・放出過程におけるエネルギー損失を観測した。陽電子ビームラインにパルスストレッチングセクションが導入され、陽電子ビームのパルス幅が1.2
sから20msまで可変になった。
和田 健*; 兵頭 俊夫*; 柳下 明*; 池田 光男*; 大澤 哲*; 設楽 哲夫*; 満汐 孝治*; 立花 隆行*; 長嶋 泰之*; 深谷 有喜; et al.
European Physical Journal D, 66(2), p.37 - 40, 2012/02
被引用回数:38 パーセンタイル:86(Optics)本論文では、高エネルギー加速器研究機構(KEK)低速陽電子実験施設の最近の進展について報告する。はじめに、低速陽電子ビームを生成するためのコンバータ・モデレータアッセンブリの改良を行った。具体的には、コンバータ・モデレータのフレームをタンタルで作製し、モデレータ内部ではタングステン薄膜を井桁状に2セット組み、2段に配置した。この改良により、低速陽電子のビーム強度が以前のものに比べて一桁増大するに至った。この高強度陽電子ビームを用いて、二つの新たな研究が進展した。一つは、ポジトロニウム負イオンの光脱離実験を行い、レーザーによるポジトロニウムの中性化に成功した。二つ目は、反射高速陽電子回折(RHEPD)装置を開発し、これまでの線源法に比べて5-10倍の反射強度を得ることに成功した。今後、両実験のさらなる発展が見込まれる。
山田 知典; 長嶋 利夫*
日本計算工学会論文集(インターネット), 2009(6), 7 Pages, 2009/03
従来の有限要素解析における要素生成の困難さを排除するためエレメントフリーガラーキン法(EFGM)を代表とする多くのメッシュフリー法が提案され久しい。これらの構造格子を利用したメッシュフリー法は解析対象の形状とメッシュ表面が一致するとは限らないため、境界条件、特に変位拘束等の基本境界条件をどのように適用するかという問題と境界上に存在する要素(境界要素)においていかに効率よく要素剛性行列を積分するかという問題が残されている。本研究ではメッシュフリー法の一種であるStructured eXtended FEMの定式化においてNewton-Cotes積分を利用した境界要素における効率的な要素剛性行列積分手法を示す。
中村 博雄; 辻 俊二; 清水 勝宏; 平山 俊雄; 細金 延幸; 吉田 英俊; 飛田 健次; 小出 芳彦; 西谷 健夫; 永島 圭介; et al.
核融合研究, 65(SPECIAL ISSUE), p.261 - 285, 1991/03
本報告は、JT-60の外側ダイバータおよび下側ダイバータ実験で行なった、粒子閉じ込め特性とヘリウム灰排気輸送に関する結果をまとめたものである。外側ダイバータ実験で、粒子閉じ込め時間やリサイクリング率の測定を行なった。また、ポンプリミタやダイバータ室粒子排気装置により、粒子排気特性を実証した。電子密度610
m
の放電を行い、20MWのNBI加熱による補給粒子(3Pam
/s)を、ダイバータ排気装置で排気可能であることを示した。下側ダイバータ実験では、ヘリウムNBによりプラズマ中心領域への粒子補給を行い、10MWのNB加熱放電で、ヘリウム灰排気特性を調べた。その結果、高密度放電によりヘリウム灰排気が軽減されることを明らかにした。ヘリウム輸送は、電子よりも異常な内側ピンチが大きいことを示した。
杉江 達夫; 久保 博孝; 逆井 章; 小出 芳彦; 平山 俊雄; 嶋田 道也; 伊丹 潔; 河野 康則; 西谷 健夫; 永島 圭介; et al.
核融合研究, 65(SPECIAL ISSUE), p.287 - 306, 1991/03
JT-60は、第1壁の材料を金属から炭素に変え、プラズマの配位についてもリミッター、外側X点閉ダイバータ、下側X点開ダイバータ配位での高加熱入力実験を行ってきた。これら第1壁及び配位の違いによる不純物の特性について調べた結果、酸素不純物の少ない、金属第1壁の外側X点閉ダイバータ配位でのプラズマが一番不純物が少なかった。また、高密度領域では、ダイバータ部での炭素、水素からの放射冷却により、ダイバータ板への熱流束が低減された。プラズマ中の不純物輸送については、Lモードの中性粒子加熱プラズマでは、異常輸送が支配的であり、不純物のプラズマ中心への集中は観測されなかった。ただし、ペレット入射プラズマでは、電子密度が中心ピークした時に、不純物のプラズマ中心への集中が観測された。
永島 圭介; 福田 武司; 菊池 満; 平山 俊雄; 西谷 健夫; 竹内 浩
Nuclear Fusion, 30(11), p.2367 - 2375, 1990/11
被引用回数:7 パーセンタイル:32.72(Physics, Fluids & Plasmas)簡易な摂動法を用いて、JT-60における粒子輸送の研究を実施した。鋸歯状振動に伴う密度揺動の解析より、粒子輸送係数は、電子密度に対して反比例的に減少していくことが明らかとなった。また、ペレット入射にともなう密度揺動の解析から得られた粒子輸送係数の値は、鋸歯状振動の測定結果と一致した。さらに、鋸歯状振動の場合の熱パルス伝播と粒子パルス伝播の解析を行うことにより、熱及び粒子拡散係数の比を評価することが出来、その値はほぼ4程度であることが分かった。また、こうした実験結果を、ドリフト波理論から得られる輸送係数と比較検討した。
西谷 健夫; 永島 圭介; 近藤 貴; 西野 信博*; 芳野 隆治; 平山 俊雄; 竹内 浩
Review of Scientific Instruments, 61(10), p.3090 - 3092, 1990/10
被引用回数:2 パーセンタイル:43.54(Instruments & Instrumentation)JT-60において、4銃身圧空ペレット入射装置による、水素ペレット入射実験を行なった。そのペレットの溶発分布を測定するために、光ファイバー光学系と多チャンネルフォトダイオードを組み合わせた、溶発分布測定装置を開発した。また測定した溶発分布と中性粒子遮蔽モデルに基づくシミュレーション計測との比較を行なった。
久保 博孝; 杉江 達夫; 逆井 章; 小出 芳彦; 西野 信博*; 平山 俊雄; 西谷 健夫; 永島 圭介; 赤岡 伸雄*; 竹内 浩; et al.
Nuclear Fusion, 29(4), p.571 - 582, 1989/04
被引用回数:9 パーセンタイル:41.54(Physics, Fluids & Plasmas)2つの期間(真空容器の第一壁が金属の期間と炭素の期間)におけるJT-60プラズマ中での不純物について、可視分光と真空紫外分光を用いて研究した。本論文では、ダイバーター配位及びリミター配位での、中性粒子加熱実験及びオーミック実験における、有効電荷数、不純物量、放射損失の測定について述べる。
小出 芳彦; 平山 俊雄; 杉江 達夫; 逆井 章; 久保 博孝; 赤岡 伸雄*; 西谷 健夫; 永島 圭介; 白井 浩; 竹内 浩; et al.
Nuclear Fusion, 28(10), p.1835 - 1844, 1988/10
被引用回数:5 パーセンタイル:26.68(Physics, Fluids & Plasmas)JT-60のダイバーター放電における不純物輸送について調べた。その手法は、TiXIII(23.356、TiXX(259.3
、TiXXI(resonance)の各不純物ラインの時間変化を1次元輸送計算の結果と比較し、輸送係数を求めるものである。
山田 知典; 長嶋 利夫*
no journal, ,
従来の有限要素解析における要素生成の困難さを排除するためエレメントフリーガラーキン法(EFGM)を代表とする多くのメッシュフリー法が提案され久しい。メッシュフリー法の実用化のため、本発表ではメッシュフリー法の一種であるStructured eXtended FEMにおいてNewton-Cotes積分を利用した境界要素における効率的な要素剛性行列積分手法を示す。
和田 健*; 兵頭 俊夫*; 柳下 明*; 池田 光男*; 大澤 哲*; 設楽 哲夫*; 満汐 孝治*; 鈴木 亮平*; 立花 隆行*; 長嶋 泰之*; et al.
no journal, ,
KEK低速陽電子実験施設の最近の進展について報告する。はじめに、低速陽電子ビームを生成するためのモデレーター・コンバーターの交換を行った。コンバーターとモデレーターのフレームをタンタルで作製した。モデレーターは、25m厚のタングステン薄膜を井桁状に2セット組み、2段に配置した。モデレーター・コンバーター交換前後の低速陽電子ビームの強度を比較したところ、毎秒7
10
個に増大した。続いて、陽電子ビームを用いた物性研究として、以下の2つの実験が進展した。ポジトロニウム負イオンの実験に関しては、アルカリ金属を蒸着したタングステン表面から、ポジトロニウム負イオンが高い効率で生成することがわかった。さらに、短パルス陽電子ビームとレーザーを用いて、ポジトロニウム負イオンの光脱離実験を行い、エネルギーが揃ったポジトロニウムを取り出すことに成功した。また、KEK低速陽電子実験施設のビームラインに反射高速陽電子回折(RHEPD)実験装置を設置し、RHEPD実験を開始した。Si(111)-7
7表面超構造の陽電子回折パターンの観察に成功し、ばらつきが非常に小さいロッキング曲線の測定にも成功した。現状で、5-10倍の反射強度を得ている。今後は、さらなるビーム強度の増大及び実際の表面超構造物性の研究に展開させる。
和田 健*; 兵頭 俊夫*; 小菅 隆*; 斉藤 裕樹*; 池田 光男*; 大澤 哲*; 設楽 哲夫*; 満汐 孝治*; 立花 隆行*; 長嶋 泰之*; et al.
no journal, ,
本講演では、高エネルギー加速器研究機構(KEK)物質構造科学研究所(IMSS)低速陽電子実験施設の最近の進展について報告する。本実験施設は、専用LINAC(55MeV)を有し、高強度のパルス低速陽電子ビームを供している。エネルギー可変(最大35keV)である低速陽電子ビームは、グランド電位のビームラインを磁場輸送され、コンパクトな分岐ユニットを用いて実験ホールに振り分けられる。現在、約100台のコイル電源を制御するために、プログラマブルロジックコントローラ(PLC)を用いたパソコンによる一括操作システムを導入中である。ビームラインの真空度は、1-510
Paである。本実験施設は、KEKの放射光共同利用実験審査委員会(PF-PAC)の承認を受けたユーザーに開放されている。最近、低速陽電子の発生部であるコンバータ/モデレータアセンブリを改良し、ビーム強度が一桁(ロングパルスモードで
e
/sec)増大した。この増強された低速陽電子ビームを用いて、ポジトロニウム負イオン(Ps
)の光脱離、反射高速陽電子回折(RHEPD)、ポジトロニウム飛行時間(Ps-TOF)の3つの実験が現在進行中である。
和田 健*; 兵頭 俊夫*; 小菅 隆*; 斉藤 祐樹*; 柳下 明*; 池田 光男*; 大澤 哲*; 諏訪田 剛*; 古川 和朗*; 白川 明広*; et al.
no journal, ,
本講演では、高エネルギー加速器研究機構(KEK)低速陽電子実験施設の最近の進展について報告する。本施設では、2010年夏に、低速陽電子ビーム生成のためのコンバータ・モデレータユニットを改造し、ビーム強度が一桁増大した。増大したビーム強度を生かして、ポジトロニウム負イオンの分光実験、反射高速陽電子回折(RHEPD)実験、ポジトロニウム飛行時間測定実験を展開してきた。2012年春には、RHEPD実験用に新たにタングステンモデレータを用いた透過型輝度増強ユニットを導入し、質・強度ともに大幅に向上した平行ビームを生成することに成功した。この高強度・高輝度陽電子ビームを用いて、Si(111)-77表面からのRHEPDパターンを測定したところ、従来の
Na線源を用いたビームでは捉えることができなかった、表面超構造に由来する高次の回折スポットを観測することに成功した。
和田 健*; 望月 出海*; 兵頭 俊夫*; 小菅 隆*; 斉藤 裕樹*; 設楽 哲夫*; 大澤 哲*; 池田 光男*; 白川 明広*; 古川 和朗*; et al.
no journal, ,
高エネルギー加速器研究機構物質構造科学研究所の低速陽電子実験施設では、ライナックベースの低速陽電子ビームを共同利用に供している。近年成果が上がっている、反射高速陽電子回折(RHEPD)実験とポジトロニウム負イオン分光実験を次の段階に進めるために、多数のコイル用電源を移動して新しいビームラインの分岐を整備するとともに、装置の移動を行った。また、低速陽電子回折(LEPD)実験装置開発のための予備実験を行い、装置設計を進めている。平成24年度秋のビームタイムより共同利用が再開したポジトロニウム飛行時間測定装置における実験成果の紹介も行う予定である。
和田 健*; 望月 出海*; 兵頭 俊夫*; 小菅 隆*; 斉藤 裕樹*; 設楽 哲夫*; 大澤 哲*; 池田 光男*; 白川 明広*; 古川 和朗*; et al.
no journal, ,
高エネルギー加速器研究機構物質構造科学研究所の低速陽電子実験施設では、ライナックベースの低速陽電子ビームを共同利用に供している。2012年度春に、日本原子力研究開発機構の河裾グループの協力を得て、反射高速陽電子回折用に透過型の輝度増強ユニットを導入した。磁場で輸送した15keVの低速陽電子ビームを非磁場領域に解放した後、10kVに印加した厚さ100nmのタングステン薄膜に磁気レンズを用いて収束し、数段からなる引き出し電極と磁気レンズを用いてアース電位の試料に導く。輝度増強ユニット導入前と比べて、ビームのエネルギー広がりが1桁以上狭くなるとともに、反射強度が約4倍向上した。また、これまで使用できなかったポジトロニウム飛行時間(Ps-TOF)測定装置を、東京理科大学長嶋グループの協力を得て再整備し、同装置を用いる共同利用の募集を開始した。2012年度秋より3課題のPs-TOF測定装置を用いた共同利用が開始された。2009年度まで行われていた透過型陽電子顕微鏡実験で用いた輝度増強チャンバーを生かし、東京大学物性研究所高橋グループ及び千葉大学藤浪グループの協力を得て、低速陽電子回折実験装置の開発を開始した。最近予備実験として、このビームライン分岐におけるビーム試験と、輝度増強ユニットの動作試験を行った。以上の施設の整備状況について報告するとともに、最近の共同利用の成果の紹介を行う。
和田 健*; 望月 出海*; 兵頭 俊夫*; 小菅 隆*; 斉藤 裕樹*; 濁川 和幸*; 設楽 哲夫*; 大澤 哲*; 池田 光男*; 白川 明広*; et al.
no journal, ,
高エネルギー加速器研究機構(KEK)物質構造科学研究所の低速陽電子実験施設では、ライナックベースの大強度低速陽電子ビームを共同利用に供している。2012年春に、日本原子力研究開発機構の協力を得て、反射高速陽電子回折(RHEPD)用に透過型の輝度増強ユニットを導入した。これにより、Naベースの陽電子ビームと比較して、ビームの輝度が約3600倍上がり、ビーム強度は約60倍向上した。この輝度増強ビームを用いてSi(111)-7
7表面におけるRHEPD実験を行ない、全反射臨界角以下の領域で、最表面原子層からのみの明瞭な回折像を観測することに成功した。近年成果が上がっている上記RHEPD実験とポジトロニウム負イオン分光実験を次の段階に進めるために、地下1階部分の多数のコイル用電源を実験と干渉しないスペースへ移動して、より広い実験スペースを確保した。ロングパルスモードを使用するRHEPD実験は地下1階で、ショートパルスモードを使用するポジトロニウム負イオン実験とポジトロニウム飛行時間測定実験を地上1階で行うよう、ステーションの再配置を行った。
和田 健*; 望月 出海*; 兵頭 俊夫*; 小菅 隆*; 斉藤 裕樹*; 濁川 和幸*; 設楽 哲夫*; 大澤 哲*; 池田 光男*; 白川 明広*; et al.
no journal, ,
高エネルギー加速器研究機構(KEK)物質構造科学研究所の低速陽電子実験施設で得られた最近の成果について報告する。本施設では、専用ライナック(55MeV)を有しており、高強度のパルス低速陽電子ビーム(510
e
/s: ロングパルスモード)を共同利用に供している。低速陽電子ビームは、高圧(35kVまで)に印加された発生部で生成され、磁場を用いて接地されたビームラインを輸送され、各実験ホールに振り分けられる。現在、3つの実験(ポジトロニウム負イオン分光,ポジトロニウム飛行時間測定,反射高速陽電子回折(RHEPD))が進行中である。今回、RHEPDの最新の成果について取り上げる。陽電子における結晶ポテンシャルは、電子の場合とは逆のプラスであり、陽電子は、低視射角入射で全反射を起こす。最近、Si(111)-7
7表面におけるRHEPD実験を行い、全反射臨界角以下の領域で、最表面原子層からのみの明瞭な回折像を観測することに成功した。
和田 健*; 望月 出海*; 兵頭 俊夫*; 小菅 隆*; 斉藤 裕樹*; 濁川 和幸*; 設楽 哲夫*; 大澤 哲*; 池田 光男*; 白川 明広*; et al.
no journal, ,
高エネルギー加速器研究機構(KEK)物質構造科学研究所の低速陽電子実験施設では、専用電子線形加速器(linac)を用い、高強度のパルス低速陽電子ビームを提供している。低速陽電子の生成ユニットは35kVまで印加可能である。陽電子ビームは接地されたビームライン中を磁場輸送され、各実験ホールに振り分けられる。現在、3つの実験ステーションが稼働中である。ポジトロニウム負イオン(Ps)では、エネルギー可変(0.3-1.9keV)のポジトロニウム(Ps)ビームの発生に成功している。Psビームは、絶縁体の表面回折実験に利用される予定である。ポジトロニウム飛行時間(Ps-TOF)測定では、表面状態の情報を得ることができる。反射高速陽電子回折(RHEPD)は、最表面構造を決定することができる。RHEPDは、反射高速電子回折(RHEED)の陽電子版である。電子の場合とは対照的に、陽電子の結晶ポテンシャルは正であるため、ある臨界角以下の視射角で入射した場合、陽電子は物質表面で全反射される。最近、Si(111)-
表面からの全反射陽電子回折パターンが最表面原子のみの情報を含むことが分かった。
和田 健*; 望月 出海*; 兵頭 俊夫*; 設楽 哲夫*; 大澤 哲*; 池田 光男*; 満汐 孝治*; 寺部 宏基*; 飯田 進平*; 長嶋 泰之*; et al.
no journal, ,
高エネルギー加速器研究機構(KEK)物質構造科学研究所(IMSS)低速陽電子実験施設(SPF)では、専用LINAC(55MeV)を用い、高強度のパルス低速陽電子ビームを供している。陽電子はTaコンバーターに打ち込まれた高エネルギー電子の制動放射による対生成により発生する。Taコンバーターから放出された陽電子はW薄膜内で熱化し、それらの一部が負の仕事関数により薄膜表面から再放出される。得られた単色陽電子は35keVまでの任意のエネルギーに加速され、低速陽電子ビームとして実験ステーションに磁場輸送される。現在、ポジトロニウム負イオン(Ps)の光脱離、ポジトロニウム飛行時間(Ps-TOF)、反射高速陽電子回折(RHEPD)の3つの実験ステーションが稼働中である。Ps
実験ステーションでは、静電加速されたPs
の光脱離によりエネルギー可変のPsビームを発生させる。Ps-TOF実験では、Ps放出を通して表面状態に関する情報を与える。RHEPDは反射高速電子回折(RHEED)の陽電子版である。電子の場合とは対照的に、陽電子の結晶ポテンシャルが正であるため、視射角がある臨界角より小さいとき、陽電子は物質表面で全反射する。陽電子ビームを高輝度化するために、100nm厚のW薄膜を持つ透過型のリモデレーターを導入した。その結果、Si(111)-
超構造からの鮮明な分数次スポットの観測に成功した。
和田 健*; 望月 出海*; 兵頭 俊夫*; 設楽 哲夫*; 深谷 有喜; 前川 雅樹; 河裾 厚男; 満汐 孝治*; 寺部 宏基*; 飯田 進平*; et al.
no journal, ,
最近、高エネルギー加速器研究機構(KEK)物質構造科学研究所(IMSS)低速陽電子実験施設では、反射高速電子回折(RHEED)の陽電子版である反射高速陽電子回折(RHEPD)装置を導入した。専用電子線形加速器(55MeV)を備えた低速陽電子実験施設では、高強度のパルス低速陽電子ビームを供している。陽電子ビームは、高圧(35keVまで)に印加された発生部で生成され、接地されたビームラインを磁場輸送され、各実験ステーションに振り分けられる。陽電子ビームは、非磁場領域に解放された後、輝度増強され、回折実験に用いられる。ポジトロニウム負イオンの光脱離により生成したエネルギー可変ポジトロニウムビームとポジトロニウム飛行時間(Ps-TOF)実験の最近の結果についても報告する。