Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 399

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of methodology combining chemical analysis technology with informatics technology to understand perspectives property of debris and tie-up style human resource development (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Fukushima University*

JAEA-Review 2025-002, 108 Pages, 2025/07

JAEA-Review-2025-002.pdf:5.25MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of methodology combining chemical analysis technology with informatics technology to understand perspectives property of debris and tie-up style human resource development" conducted from FY2019 to FY2023. The present study aims to Goal of this study is to implement a research plan relate to a development of combinational technology of new chemical analysis with informatics, and the aim is to develop new system for whole image estimation system using small quantities of information. Conducting the collaboration study with JAEA researchers (tie-up style) make connect to the development of human resource from master's course student to post-doctoral researchers who are progress in the local-based and/or many academics fields research. We are in progress to grow international-minded human resources.

JAEA Reports

Annual report for FY2023 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2023 - March 31, 2024)

Naraha Center for Remote Control Technology Development

JAEA-Review 2025-017, 43 Pages, 2025/06

JAEA-Review-2025-017.pdf:2.73MB

Naraha Center for Remote Control Technology Development (NARREC) was established in Japan Atomic Energy Agency to promote a decommissioning work of Fukushima Daiichi Nuclear Power Station (Fukushima Daiichi NPS). NARREC consists of a Full-scale Mock-up Test Building and Research Management Building. Various test facilities are installed in these buildings for the decommissioning work of Fukushima Daiichi NPS. These test facilities are intended to be used for various users, such as companies engaged in the decommissioning work, research and development institutions, educational institutions and so on. The number of NARREC facility uses was 88 in FY2023. We participated booth exhibitions and presentations on the decommissioning related events. Moreover, we also contributed to the development of human resources by supporting the 8th Creative Robot Contest for Decommissioning. As a new project, "Narahakko Children's Classroom" was implemented for elementary school students in Naraha Town. And, Subsidy program work of "Project of Decommissioning and Contaminated Water and Treated Management", entitled "Development of Technologies for Work Environmental Improvement in R/B" was carried out as scheduled. This report summarizes the activities of NARREC in FY2023, such as the utilization of facilities and equipment of NARREC, arrangement of the remote-control machines for emergency response, and training for operators by using the machines.

JAEA Reports

Human resource development related to remote control technology for monitoring inside RPV pedestal during retrieval of fuel debris (Contract research); FY2023 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2025-001, 94 Pages, 2025/06

JAEA-Review-2025-001.pdf:6.21MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Human resource development related to remote control technology for monitoring inside RPV pedestal during retrieval of fuel debris" conducted from FY2019 to FY2023. The present study aims to construct a monitoring platform for understanding the status inside a reactor during fuel debris removal, and measurement and visualization by sensors moving on the platform. In addition, to develop research personnel through research education by participating in such research projects, classroom lectures, and facility tours is also a goal of this project. In FY2023, along with the verification of each system, a three-dimensional reconstruction model was generated using images acquired from a moving camera on the monitoring platform in a simulated environment, and an integrated experiment was conducted to demonstrate that it is possible to present images from the optimal viewpoint for the visualization target, with the cooperation of each research theme.

JAEA Reports

Development of extremely small amount analysis technology for fuel debris analysis (Contract Research); FY2023 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2024-064, 118 Pages, 2025/06

JAEA-Review-2024-064.pdf:6.73MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted from FY2019 to FY2023. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We developed sample pretreatment technology and separation / analysis process required for chemical analysis. The purpose of this study is to streamline future planned fuel debris analysis. To promote 1F decommissioning, we will train human resources through on-the-job training. In particular, we applied the extremely small amount analysis (ICP-MS/MS), which has recently been successful in the fields of analytical chemistry and radiochemistry, to the nuclear field. This method allows high-accuracy analysis without pretreatment to isolate the nuclide to be measured. The separation pretreatment can be skipped and a rapid analysis process can be established.

JAEA Reports

Background aerial monitoring and UAV radiation monitoring technology development for emergency response and preparedness in fiscal year 2023 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; et al.

JAEA-Technology 2024-022, 170 Pages, 2025/03

JAEA-Technology-2024-022.pdf:15.09MB

On March 11, 2011, the 2011 off the Pacific coast of Tohoku Earthquake caused a tsunami that led to the Fukushima Daiichi Nuclear Power Station accident, releasing radioactive material into the environment. Since then, Aerial Radiation Monitoring (ARM) using manned helicopters has been employed to measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) utilizes this technology for emergency monitoring during nuclear facility accidents, aiming to provide prompt results by pre-arranging information on background radiation, topography, and control airspaces around nuclear power plants nationwide. In fiscal year 2023, the commissioned project included conducting ARM around the Sendai Nuclear Power Station and preparing related information. To enhance effectiveness during emergencies, ARM and the first domestic training flight of Unmanned Aerial Vehicles (UAVs) were conducted during the FY2023 Nuclear Energy Disaster Prevention Drill. Furthermore, UAVs radiation monitoring technology was advanced by selecting UAVs and investigating their performance. This report summarizes the results and technical issues identified providing insights to improve emergency preparedness.

JAEA Reports

Aerial monitoring around TEPCO's Fukushima Daiichi Nuclear Power Station and development of radiation monitoring technology for unmanned airplanes in fiscal year 2023 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Nagakubo, Azusa; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; et al.

JAEA-Technology 2024-021, 232 Pages, 2025/03

JAEA-Technology-2024-021.pdf:25.79MB

The 2011 off the Pacific coast of Tohoku Earthquake on March 11, 2011, caused a tsunami that led to the TEPCO's Fukushima Daiichi Nuclear Power Station (FDNPS) accident, releasing a large amount of radioactive material into the surrounding environment. Since the accident, Aerial Radiation Monitoring (ARM) has been used to quickly and widely measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) has continuously conducted ARM around FDNPS using manned and unmanned helicopters. This report summarizes the monitoring results for fiscal year 2023, evaluates changes in dose rate from past results, and discusses the factors contributing to these changes. Additionally, an analysis considering terrain undulation was conducted to improve accuracy for converting ARM data into dose rate. Furthermore, a method to discriminate airborne radon progeny was applied for ARM results to evaluate its impact. Moreover, to perform wide-area monitoring more efficiently, we advanced the development of unmanned airplane monitoring technology.

JAEA Reports

Investigations on distribution of radioactive substances owing to the Fukushima Daiichi Nuclear Power Station Accident in the fiscal year 2023 (Contract research)

Group for Fukushima Mapping Project

JAEA-Technology 2024-017, 208 Pages, 2025/03

JAEA-Technology-2024-017.pdf:27.32MB

This report presents results of the investigations on the distribution-mapping project of radioactive substances owing to TEPCO Fukushima Daiichi Nuclear Power Station (FDNPS) conducted in FY2023. Car-borne surveys, a measurement using survey meters, a walk survey and an unmanned helicopter survey were carried out to obtain air dose rate data to create their distribution maps, and temporal changes of the air dose rates were analyzed. Surveys on depth profile of radiocesium and in-situ measurements as for radiocesium deposition were performed. Based on these measurement results, effective half-lives of the temporal changes in the air dose rates and the deposition were evaluated. Score maps to classify the importance of the measurement points were created, and the temporal changes in the score were analyzed. A system to report the tritium concentration level in seawater to the Nuclear Regulation Authority was operated, and the variation of tritium concentration before and after the discharge of ALPS treated water to the ocean was analyzed. Monitoring data in coastal area performed owing to the comprehensive radiation monitoring plan until FY2023 was analyzed. Using the Bayesian hierarchical modeling approach, we obtained maps that integrated air dose rate distribution data acquired through surveys such as car-borne and walk surveys. Representative life patterns that can be expected after the return to the evacuation-designated restricted area were set, and the cumulative exposure doses were evaluated for the local governments and residents in the area. The measurement results for FY2023 were published on the Web site and measurement data were stored as CSV format. Radiation monitoring and analysis of environmental samples owing to the comprehensive radiation monitoring plan were carried out.

JAEA Reports

Investigation of chemical substances affect the fluidity of paste on cement solidification

Taniguchi, Takumi; Matsumoto, Saori; Hiraki, Yoshihisa; Sato, Junya; Fujita, Hideki*; Kaneda, Yoshihisa*; Kuroki, Ryoichiro; Osugi, Takeshi

JAEA-Review 2024-059, 20 Pages, 2025/03

JAEA-Review-2024-059.pdf:1.0MB

The basic performance required for solidifying waste into cement, such as fluidity before curing and strength after curing, is expected to be affected by the chemical effects of substances and components contained in the waste. The fluidity before curing and the strength properties after curing are greatly influenced by the curing speed of the cement. We investigated existing knowledge with a focus on chemical substances that affect the curing speed of cement. In this report, chemical substances that affect fluidity are broadly classified into inorganic substances such as (1) anion species, (2) metal elements such as heavy metals, (3) inorganic compounds as cement admixtures, and (4) organic compounds as cement admixtures. Based on the investigation, we actually added chemicals and measured the setting time. As a result, it was found that there are multiple mechanisms contributing to accelerated hardening. We investigated chemical substances that inhibit the curing reaction of cement, and were able to compile information to consider ingredients that are contraindicated in cement curing.

JAEA Reports

Handbook of Advanced Nuclear Hydrogen Safety (2nd Edition); Development of hydrogen behavior integrated analysis system and application to actual PWR

Terada, Atsuhiko; Thwe Thwe, A.; Hino, Ryutaro*

JAEA-Review 2024-049, 400 Pages, 2025/03

JAEA-Review-2024-049.pdf:13.94MB

In the aftermath of the Fukushima Daiichi Nuclear Power Station accident, safety measures against hydrogen in severe accident has been recognized as a serious technical problem in Japan. As one of efforts to form a common knowledge base between nuclear engineers and experts on combustion and explosion, we issued the "Handbook of Advanced Nuclear Hydrogen Safety (1st edition)" in 2017. For improvement of the rational advancement of hydrogen safety measures and further reliability of hydrogen safety evaluation, a CFD analysis is highly expected to produce more precisely and quantitative results. We have been developing an integrated CFD analysis code system which can analyze hydrogen diffusion, explosion-combustion and structural integrity at the severe accident especially for pressurized water reactors (PWRs). We organized the role of LP and the CFD analyses and their utilization examples of hydrogen safety validation. Based on these results, we made the "Handbook of Advanced Nuclear Hydrogen Safety (2nd volume)". The analysis results of real scale PWR described in 2nd volume are confirmed by cross-analysis models and existing data obtained through representative small, medium and large-scale tests.

JAEA Reports

Applicability evaluation of Type A transport container for off-site transportation of small-amount of fuel debris

Sakamoto, Masahiro; Okumura, Keisuke; Kanno, Ikuo; Matsumura, Taichi; Terashima, Kenichi; Riyana, E. S.; Mizokami, Masato*; Mizokami, Shinya*

JAEA-Research 2024-017, 14 Pages, 2025/03

JAEA-Research-2024-017.pdf:1.34MB

In the TEPCO's Fukushima Daiichi Nuclear Power Station (1F), a trial retrieval of fuel debris with small-amount from Unit 2 is planned. The retrieved fuel debris will be transported out of 1F to Institutes in Ibaraki prefecture for analysis. The analyzed results will be utilized for the improvement of the processes (retrieval, transportation and storage) in the fuel debris management as feedback, and also for the development of technologies necessary in the future. The weight of fuel debris in the trial retrieval is planned to be a few grams. After the trial, the scale of retrieval will be expanded step by step. In the trial retrieval, a rational transportation container should be considered beforehand, according to the laws and regulations associated with the off-site transportation. The transportation container has a classification and the classification is decided according to the radioactivity of the material in the container. In this report, we evaluated the applicability of the Type A transport container to contribute to the safety assessment of retrieved fuel debris.

JAEA Reports

Evaluation of exposure doses and reduction factor for sheltering for each nuclear site under each accident scenario (Contract research)

Hirouchi, Jun; Watanabe, Masatoshi*; Hayashi, Naho; Nagakubo, Azusa; Takahara, Shogo

JAEA-Research 2024-015, 114 Pages, 2025/03

JAEA-Research-2024-015.pdf:10.03MB

The public living in areas contaminated by nuclear accidents is exposed to radiation in the early phase and over the long term. Even under the same accident scenario, the exposure doses and the effectiveness of sheltering, which is one of the protective measures, vary depending on the meteorological condition and the surrounding environment. The exposure doses and sheltering effectiveness in the early phase are important information for the public and the national and local governments planning a nuclear emergency preparedness. In this report, we evaluate the exposure doses and sheltering effectiveness at sites with nuclear facilities in Japan using OSCAAR, one of the probabilistic risk assessment codes, for five accident scenarios: three scenarios from past severe accident studies; a scenario defined by the Nuclear Regulatory Authority; and a scenario assuming the Fukushima Daiichi Nuclear Power Station accident. The sheltering effectiveness differed by approximately 20% among the sites. This was due to the differences in wind speed among the sites.

JAEA Reports

Annual report for FY2022 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2022 - March 31, 2023)

Naraha Center for Remote Control Technology Development

JAEA-Review 2024-046, 52 Pages, 2025/01

JAEA-Review-2024-046.pdf:3.6MB

Naraha Center for Remote Control Technology Development (NARREC) was established in Japan Atomic Energy Agency to promote a decommissioning work of Fukushima Daiichi Nuclear Power Station (Fukushima Daiichi NPS). NARREC consists of a Full-scale Mock-up Test Building and Research Management Building. Various test facilities are installed in these buildings for the decommissioning work of Fukushima Daiichi NPS. These test facilities are intended to be used for various users, such as companies engaged in the decommissioning work, research and development institutions, educational institutions and so on. The number of NARREC facility uses was 113 in FY2022. We participated booth exhibitions and presentations on the decommissioning related events. Moreover, we also contributed to the development of human resources by supporting the 7th Creative Robot Contest for Decommissioning. As a new project, "Narahakko Children's Classroom" was implemented for elementary school students in Naraha Town. This report summarizes the activities of NARREC in FY2022, such as the utilization of facilities and equipment of NARREC, arrangement of the remote-control machines for emergency response, and training for operators by using the machines.

JAEA Reports

Proceedings of the 9th "Conference for R&D Initiative on Nuclear Decommissioning Technology by the Next Generation"

Usami, Hiroshi; Ito, Rintaro; Tagawa, Akihiro

JAEA-Review 2024-045, 49 Pages, 2024/12

JAEA-Review-2024-045.pdf:13.38MB

The decommissioning of the TEPCO's Fukushima Daiichi Nuclear Power Station is a long-term project, and the training of young engineers and researchers who will be responsible for future decommissioning is a necessary and urgent task. Since 2016, Collaborative Laboratories for Advanced Decommissioning Science has been continuously organizing "Conferences for R&D Initiative on Nuclear Decommissioning Technology by the Next Generation (NDEC)" for students who are engaged in research activities for decommissioning. NDEC is a forum for students to present their research for the purpose of human resource development and networking among young researchers, and to increase their motivation for decommissioning research. NDEC-9 was held at "Manabi-no-Mori" in Tomioka-machi, Fukushima Prefecture, from March 21-22, 2024. This proceeding compiles the contents of report papers in the conference.

JAEA Reports

Development of a high-resolution imaging camera for alpha dust and high-dose rate monitor (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2024-016, 61 Pages, 2024/12

JAEA-Review-2024-016.pdf:2.88MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of a high-resolution imaging camera for alpha dust and high-dose rate monitor" conducted in FY2022. The present study aims to develop a high-resolution imaging camera for alpha dust and a high-dose rate monitor. To realize the high-resolution imaging camera for alpha dust, we have developed novel scintillation materials with emission bands of 500-800 nm. Moreover, we have prepared several materials for the camera and software. We have also developed novel scintillation materials with emission bands of 650-1,000 nm, and simulation studies have been conducted for the high-dose-rate monitor system consisting of optical fiber.

JAEA Reports

Development and evaluation of a real-time 3D positioning embedded system combining wireless UWB and camera image analysis (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokai National Higher Education and Research System*

JAEA-Review 2024-027, 77 Pages, 2024/11

JAEA-Review-2024-027.pdf:6.0MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development and evaluation of a real-time 3D positioning embedded system combining wireless UWB and camera image analysis" conducted in FY2022. The present study aims to realize an embedded system that combines two of the latest popular technologies, "wireless UWB (Ultra Width Band)" and "multi-camera object recognition," with the goal of simple realtime 3D positioning with less than 10 cm accuracy by a human or robot for measuring air doses in nuclear reactor buildings.

JAEA Reports

Development of passive wireless communication systems operatable under inferior-wireless environment with obstacles (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Yokohama National University*

JAEA-Review 2024-024, 88 Pages, 2024/11

JAEA-Review-2024-024.pdf:4.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of passive wireless communication systems operatable under inferior-wireless environment with obstacles" conducted in FY2022. The present study aims to develop a wireless system, sensor positioning algorithms, and wireless area formation technology for electromagnetically shielded areas. We developed a base station antenna and a sensor node that use 2.45 GHz for downlink and 4.9 GHz, which is the second harmonic, for uplink. We also confirmed that the developed circuit and antenna operate in a strong radioactive environment.

JAEA Reports

Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc. (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2024-021, 126 Pages, 2024/11

JAEA-Review-2024-021.pdf:6.51MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc" conducted in FY2022. The present study aims to propose a construction method to stop jet deflectors by improved geopolymer and ultra-heavy muddy water, and to repair the lower part of the dry well. In addition, in order to increase the options for on-site construction in unknown situations such as deposition conditions, we will examine a wide range of construction outside the pedestal, and evaluate the feasibility of the construction method by the latest thermal flow simulation method.

JAEA Reports

Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2024-026, 80 Pages, 2024/10

JAEA-Review-2024-026.pdf:1.96MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions" conducted from FY2019 to FY2022. In the project, radiochemists, nuclear chemists, nuclear physicists, material scientists, and environmental biologists are teamed to elucidate the mechanism of the degradation of fuel debris by combined effects of radiological, chemical, and biological functions.

JAEA Reports

Development of the continuous monitoring of tritium water by mid-infrared laser spectroscopy (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institutes of Natural Sciences*

JAEA-Review 2024-025, 33 Pages, 2024/10

JAEA-Review-2024-025.pdf:1.54MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of the continuous monitoring of tritium water by mid-infrared laser spectroscopy" conducted in FY2022. The present study aims to demonstrate the principle of short-time measurement of tritiated water at the "60 Bq/cc level" using a cavity ring-down measurement system with a mid-infrared laser. To achieve the above goal, (1) research on the cavity ring-down system and (2) evaluation of hydrogen isotope composition under environmental conditions and preparation of standard samples (subcontractor: Hirosaki University) were conducted this fiscal year.

JAEA Reports

Development of radiation field mapping measurement system based on high radiation tolerant solar cells for low-light illumination (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2024-023, 78 Pages, 2024/10

JAEA-Review-2024-023.pdf:4.54MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of radiation field mapping measurement system based on high radiation tolerant solar cells for low-light illumination" conducted in FY2022. The objective of the present study is to develop a system that can map radiation fields by applying independent and remotely operated sensors to obtain real-time radiation information in PCV. The system will be implemented in an actual environment to ensure the safety of workers and equipment by monitoring the leakage of gamma rays and neutrons, which are highly penetrating and can be a cause of accidents.

399 (Records 1-20 displayed on this page)