Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 175

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development and evaluation of a real-time 3D positioning embedded system combining wireless UWB and camera image analysis (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokai National Higher Education and Research System*

JAEA-Review 2024-027, 77 Pages, 2024/11

JAEA-Review-2024-027.pdf:6.0MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development and evaluation of a real-time 3D positioning embedded system combining wireless UWB and camera image analysis" conducted in FY2022. The present study aims to realize an embedded system that combines two of the latest popular technologies, "wireless UWB (Ultra Width Band)" and "multi-camera object recognition," with the goal of simple realtime 3D positioning with less than 10 cm accuracy by a human or robot for measuring air doses in nuclear reactor buildings.

JAEA Reports

Development of passive wireless communication systems operatable under inferior-wireless environment with obstacles (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Yokohama National University*

JAEA-Review 2024-024, 88 Pages, 2024/11

JAEA-Review-2024-024.pdf:4.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of passive wireless communication systems operatable under inferior-wireless environment with obstacles" conducted in FY2022. The present study aims to develop a wireless system, sensor positioning algorithms, and wireless area formation technology for electromagnetically shielded areas. We developed a base station antenna and a sensor node that use 2.45 GHz for downlink and 4.9 GHz, which is the second harmonic, for uplink. We also confirmed that the developed circuit and antenna operate in a strong radioactive environment.

JAEA Reports

Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc. (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2024-021, 126 Pages, 2024/11

JAEA-Review-2024-021.pdf:6.51MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc" conducted in FY2022. The present study aims to propose a construction method to stop jet deflectors by improved geopolymer and ultra-heavy muddy water, and to repair the lower part of the dry well. In addition, in order to increase the options for on-site construction in unknown situations such as deposition conditions, we will examine a wide range of construction outside the pedestal, and evaluate the feasibility of the construction method by the latest thermal flow simulation method.

JAEA Reports

Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2024-026, 80 Pages, 2024/10

JAEA-Review-2024-026.pdf:1.96MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Study on degradation of fuel debris by combined effects of radiological, chemical, and biological functions" conducted from FY2019 to FY2022. In the project, radiochemists, nuclear chemists, nuclear physicists, material scientists, and environmental biologists are teamed to elucidate the mechanism of the degradation of fuel debris by combined effects of radiological, chemical, and biological functions.

JAEA Reports

Development of the continuous monitoring of tritium water by mid-infrared laser spectroscopy (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institutes of Natural Sciences*

JAEA-Review 2024-025, 33 Pages, 2024/10

JAEA-Review-2024-025.pdf:1.54MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of the continuous monitoring of tritium water by mid-infrared laser spectroscopy" conducted in FY2022. The present study aims to demonstrate the principle of short-time measurement of tritiated water at the "60 Bq/cc level" using a cavity ring-down measurement system with a mid-infrared laser. To achieve the above goal, (1) research on the cavity ring-down system and (2) evaluation of hydrogen isotope composition under environmental conditions and preparation of standard samples (subcontractor: Hirosaki University) were conducted this fiscal year.

JAEA Reports

Development of radiation field mapping measurement system based on high radiation tolerant solar cells for low-light illumination (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2024-023, 78 Pages, 2024/10

JAEA-Review-2024-023.pdf:4.54MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of radiation field mapping measurement system based on high radiation tolerant solar cells for low-light illumination" conducted in FY2022. The objective of the present study is to develop a system that can map radiation fields by applying independent and remotely operated sensors to obtain real-time radiation information in PCV. The system will be implemented in an actual environment to ensure the safety of workers and equipment by monitoring the leakage of gamma rays and neutrons, which are highly penetrating and can be a cause of accidents.

JAEA Reports

Investigation of effects of nano interfacial phenomena on dissolution aggregation of alpha nanoparticles by using micro nano technologies (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2024-022, 59 Pages, 2024/09

JAEA-Review-2024-022.pdf:4.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Investigation of effects of nano interfacial phenomena on dissolution aggregation of alpha nanoparticles by using micro nano technologies" conducted in FY2022. To ensure the safety of retrieval and storage management of nuclear fuel debris generated by the Fukushima Daiichi Nuclear Power Station accident, understanding of dissolution-denaturation behavior of the fuel debris alpha particles is one of the most crucial issues. This research aims to create novel microfluidic real-time measurement device for elucidating dissolution, aggregation, and denaturation processes of metal oxide nanoparticles under various solution environments, and clarify their nano-size and interfacial effects.

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2024-020, 77 Pages, 2024/09

JAEA-Review-2024-020.pdf:3.34MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted from FY2020 to FY2022. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle.

JAEA Reports

Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2024-019, 102 Pages, 2024/09

JAEA-Review-2024-019.pdf:4.4MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis" conducted from FY2020 to FY2022. The present study aims to corrosion, which is considered to be an important factor in the aging degradation of confinement functions (PCV, negative pressure maintenance system, etc.) during the fuel debris removal process. If the chemical species (especially H$$_{2}$$O$$_{2}$$) generated by radiolysis become locally concentrated in the areas where short-range $$alpha$$- and $$beta$$-radiation emitting nuclides come into contact, the corrosion of steels may be greatly accelerated in those areas.

JAEA Reports

Establishment of characterization method for small fuel debris using the world's first isotope micro imaging apparatus (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kogakuin University*

JAEA-Review 2024-015, 99 Pages, 2024/09

JAEA-Review-2024-015.pdf:5.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Establishment of characterization method for small fuel debris using the world's first isotope micro imaging apparatus" conducted in FY2022. The present study aims to obtain, for the first time in the world, the important data necessary for clarifying the retrieval of small amounts of fuel debris, and to evaluate and examine them. SEM-EDS and TEM-EDS cannot be used for isotopic identification and analysis of Pu and B. On the other hand, bulk analysis such as ICP-MS lacks the information in a micro region.

JAEA Reports

Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2024-012, 122 Pages, 2024/09

JAEA-Review-2024-012.pdf:6.31MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (hereafter referred to "1F"), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment" conducted in FY2022. The present study aims to establish the rational waste disposal concept of a variety of wastes generated in 1F based on the hybrid-waste-solidification by the Hot Isostatic Press (HIP) method. The ceramics form with target elements, mainly iodine, which is difficult to immobilize, and Minor actinides such as Am, an alphaemitter and heat source, are HIPed with well-studied materials such as SUS and zircaloy, which make the long-term stability evaluation and safety assessment possible.

JAEA Reports

Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2024-011, 121 Pages, 2024/09

JAEA-Review-2024-011.pdf:5.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal" conducted from FY2020 to FY2022. Estimating waste volume and concentration is essential for decommissioning concrete structures at the Fukushima Daiichi Nuclear Power Station.

JAEA Reports

Research on radioactive aerosol control and decontamination at Fukushima Daiichi Nuclear Power Station Decommissioning (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2024-031, 75 Pages, 2024/08

JAEA-Review-2024-031.pdf:3.74MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Research on radioactive aerosol control and decontamination at Fukushima Daiichi Nuclear Power Station decommissioning" conducted in FY2022. The present study aims to develop a safe laser decontamination system that can control aerosol diffusion during laser decontamination while simultaneously allowing advanced particle measurement and evaluation, in cooperation with a research group in the United Kingdom.

JAEA Reports

Clarification of debris formation conditions on the basis of the sampling data and experimental study using simulated fuel debris and reinforcement of the analytical results of severe accident scenario (Contract Research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; University of Fukui*

JAEA-Review 2024-014, 112 Pages, 2024/08

JAEA-Review-2024-014.pdf:8.22MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Clarification of debris formation conditions on the basis of the sampling data and experimental study using simulated fuel debris and reinforcement of the analytical results of severe accident scenario" conducted in FY2022. The present study aims to clarify the debris formation mechanism and utilize the results to refine the accident scenario. In the backward analysis of oxide debris formation, we succeeded in the formation of simulated fuel particle by the aerodynamic levitation method and ejection of melted oxides from tungsten pipe with a small hole. And we demonstrated the formation of simulated fuel debris of U1-No.15 obtained by the sampling in 1F.

JAEA Reports

Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3 (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2024-010, 112 Pages, 2024/08

JAEA-Review-2024-010.pdf:6.49MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3" conducted in FY2022. The present study aims to elucidate the cause of the high dosage under shield plug by clarification of to the cesium behavior of migration, adhesion to structure and deposition as well as evaluate the properties of metal-rich debris predeceasing melted through the materials science approach based on the most probable scenario of accident progression of Unit 2 and 3. In this fiscal year, the followings were achieved.

JAEA Reports

Novel mechanical manipulator for efficient fuel debris retrieval (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2024-017, 55 Pages, 2024/07

JAEA-Review-2024-017.pdf:2.6MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Novel mechanical manipulator for efficient fuel debris retrieval" conducted in FY2022. The present study aims to the development of a collision-tolerant robotic manipulator with mechanical variable impedance actuators in an unknown environment. Another research target is the system architecture of an artificial intelligence-based control method for efficient exploration and decommissioning. In addition to investigating the area deep inside the aperture, which has been difficult with conventional investigations, we aim to retrieve pebble-shaped fuel debris at the bottom of the pedestal using a gripper at the tip of the manipulator.

JAEA Reports

Fuel debris criticality analysis technology using non-contact measurement method (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2024-013, 48 Pages, 2024/07

JAEA-Review-2024-013.pdf:1.99MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2022. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology, National Institute of Advanced Industrial Science and Technology, and Nagaoka University of Technology as the second year of three years research project.

JAEA Reports

Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Okayama University*

JAEA-Review 2024-008, 59 Pages, 2024/07

JAEA-Review-2024-008.pdf:3.34MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Radiation tolerant rapid criticality monitoring with radiation-hardened FPGAs" conducted from FY2019 to FY2021. The present study aims to be developing a radiation-hardened optoelectronic FPGA with a 1 Grad total-ionizing-dose tolerance on which optical technologies are introduced onto a semiconductor technology and a radiation hardened FPGA with a 200 Mrad total-ionizing-dose tolerance not using any optical component. Moreover, Japanese research group will support hardware acceleration on FPGAs used for neutron-detection system developed by UK team. Finally, we will provide our radiation-hardened FPGA for the UK neutron-detection system.

JAEA Reports

Investigation of environment induced property change and cracking behavior in fuel debris (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2024-007, 83 Pages, 2024/06

JAEA-Review-2024-007.pdf:5.56MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Investigation of environment induced property change and cracking behavior in fuel debris" conducted from FY2020 to FY2022. The present study focuses on "metallic debris", which is mainly composed of elements derived from fuel cladding and control rod sheaths. This is the final year of the three years project. The findings on their material properties are as follows. Six phases are precipitated in the metallic debris according to the state diagram of the Zr-Fe-B-C system. Under high-temperature oxidation conditions, an outer film composed mainly of Zr$$_{3}$$Fe is formed on the surface. An inner layer oxide film is also formed according to the chemical composition of the matrix phase of the debris.

JAEA Reports

Development of elemental technologies of hand-foot-cloth monitors for $$alpha$$-contamination visualization (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2024-006, 54 Pages, 2024/06

JAEA-Review-2024-006.pdf:2.21MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of elemental technologies of hand-foot-cloth monitors for $$alpha$$-contamination visualization" conducted in FY2022. The present study aims to develop hand-foot-monitors for $$alpha$$-contamination visualization and cloth monitors for $$alpha$$/$$beta$$-contamination visualization consisting of a portable phoswich detector for measuring $$alpha$$/$$beta$$-contamination distribution and energy to ensure the safety and security of workers involved in the decommissioning project of the 1F. The possibility of practical application of new scintillator materials and devices was examined with the goal of developing such new instruments.

175 (Records 1-20 displayed on this page)